呈纤维束状的定向超细单斜氧化锆晶体凝聚微粒的制造方法技术

技术编号:1429782 阅读:226 留言:0更新日期:2012-04-11 18:40
呈纤维束状的定向超细单斜氧化锆晶体的凝聚微粒,其超细单斜氧化锆晶体的初始晶粒定向凝聚并在C-轴方向上生长成直径小于50∴的细纤维体,然后进一步聚集成束状构造.这种微粒是在120至300℃温度下,用热液加工工艺处理酸性水溶液而制备的,该酸性水溶液中含有的水溶性锆化合物,使Zr+[4+]浓度为0.1至2.0克分子/升;SO+[2-]-[4]浓度为0.2至2.0克分子/升;和从水溶性镁化合物,水溶性铵化合物及其它们的混合物中选择的一种水溶性化合物使Mg+[2+]或NH+[+]-[4]浓度为0.05至1.5克分子/升.(*该技术在2006年保护过期,可自由使用*)

【技术实现步骤摘要】
【国外来华专利技术】本专利技术涉及呈纤维束状的定向超细单斜氧化锆晶体凝聚微粒及其制造方法。更准确地说,它涉及超细单斜氧化锆晶体凝聚微粒及其制造方法。在该微粒中,超细单斜氧化锆晶体的初始晶粒在C轴方向,定向凝聚成直径小于50A°的纤维状体,并聚集为宽为300至2000A°,长为2000至10000A°的束状构造。由于向一个方向生长的各向异性细晶粒很容易在外力下定向或在成型工序中流动。所以可用作各种定向陶瓷。为使以氧化锆,部分稳化的氧化锆(Partially    stabilizd    zirconia)或压电体或铁电体为原材料的陶瓷晶体结构定向,定向各向异性的氧化锆微粒是不可缺少的。本专利技术者已就各向异性的氧化锆微粒用于此目的提出了专利申请。已提出的专利申请之一是涉及氧化锆型晶体的定向凝聚微粒的制备。首先对锆盐水溶液或水溶液与锆的氢氧化物的液态悬浮混合物,在低于pH7的酸性条件下进行热处理,而使形成单斜氧化锆细晶体;然后,对细晶体在强碱水溶液中(如氢氧化钾中加入氢氧化锆),在高于90℃的温度下进行热处理,则氧化锆晶体便在特定方向上生长。(参阅日本公开专利公报180917/1985号)。已提出的专利申请之二是涉及制备易成薄片结晶的氧化锆溶胶的方法。即对水溶性锆盐或在加热条件下通过该盐的水解作用而得到的-->超细结晶氧化锆,在浓度大于5N的浓盐酸或浓硝酸水溶液中,在温度120至250℃条件下,进行50小时以上的热处理。(参阅日本公开专利公报201622/1986号)。在另一个专利申请中涉及薄片状厚度小于500A°,含有金属离子(主要是锆)和硫酸盐离子的层状结构的氧化锆型细晶体的制备方法。(参阅中国专利申请书86104600号)。上述专利申请书揭示了各向异性的微粒各自具有彼此不同的特性。本专利技术者继续进行了更进一步的研究,并完成了本专利技术。本专利技术基于发现呈纤维束状的定向超细单斜氧化锆晶体新型细凝聚微粒的制造方法。所以,本专利技术的一个目的是提供呈纤维束状的定向超细单斜氧化锆晶体的凝聚微粒,它用于做为定向陶瓷的原材料。本专利技术的另一个目的是提供一个制造这种呈纤维束状的各向异性凝聚氧化锆微粒的方法。通过多方面的研究,本专利技术者已经发现呈纤维束状的定向超细单斜氧化锆晶体的新型而有用的凝聚微粒。在该微粒中,超细单斜氧化锆的初始晶粒已定向生成并且在C-轴方向生长成直径小于50A°的细纤维状体,它们进一步聚集成宽300至2000A°,长2000至10000A°的束状构造,其获得方法是对酸性水溶液在120至300℃温度下进行热液处理,该酸性水溶液含有水溶液的锆化合物,其加入量应使溶液Zr4+浓度为0.1至2.0克分子/升,SO2-4浓度为0.2至2.0克分子/升;还含有从水溶性镁化合物,水溶性铵化合物和它们的混合物中选择的一种水溶性化合物,其加入量使溶液中的Mg2+或NH+4离子浓度计为0.05至1.5克分子/升。-->因为各向异性凝聚氧化锆微粒不仅具有作为定向细晶粒的一般特性,而且还具有细纤维束状形式,它们容易和其他陶瓷材料混合并具有极好的反应性,因而对以氧化锆、部分稳化氧化锆。压电体或铁电体为原料的可使其晶体结构定向的陶瓷是一种极好的原材料。附图的简短描述如下。阅读本专利技术的最佳实施例,同时参阅附图,本专利技术的目的和特征就显而易见了。图1和图2是对根据本专利技术制得的呈纤维束状的定向超细单斜氧化锆晶体的两个典型凝聚微粒的外形图解说明。根据本专利技术,细凝聚氧化锆微粒的特征在于超细单斜氧化锆晶体的初始晶粒定向凝聚,并在C轴方向上生长成为直径小于50A°的细纤维状体,它们进一步聚集成宽为300至20000A°,长为2000至10000A°的束状结构。图1和图2给出按本专利技术制得的纤维束状结构的凝聚细氧化锆微粒的实例。应注意到,在本专利技术中,宽度是指该束状氧化锆微粒的最窄部分“W”。如图1所示,在束状氧化锆微粒中,最宽部分“W”的宽度一般在300至2500A°范围内。束状氧化锆微粒的宽度(最小宽度)与其长度的比例,一般在1∶2至1∶20范围内,特别是在1∶5至1∶10的范围内。呈纤维束状的定向超细单斜氧化锆晶体的细凝聚微粒能用热液处理酸性溶液制取,该酸性溶液含有水溶性锆化合物,SO2-4和从水溶性镁盐,水溶性铵盐和它们的混合物中选择的一种水溶性盐。适用于本专利技术的水溶性锆化合物包括二氯氧化锆,氢氧化锆、碳酸锆、硝酸锆和醋酸锆。锆化合物可单独使用亦可使用两种或多种混合物。锆化合物的加入量应使溶液中的Zr4+浓度在0.1至2克分子/升范围内,最好是在0.2至1克分子/升范围内。-->在酸性水溶液中还含有另一种主要成分SO2-4离子,它通常由硫酸提供。一种水溶性硫酸盐包括硫酸镁、硫酸铵等等,也可用于提供SO2-4离子。SO2-4离子的浓度应为0.2至2.0克分子/升,最好是0.6至1.5克分子/升。在这种情况下,硫酸的克分子浓度比锆克克分子浓度小3倍,因为它能给出较好的结果。适用于本专利技术的水溶性镁化合物包括硫酸镁、氢氧化镁、碳酸镁等等,其中硫酸镁为最佳,因为它给出较好的结果,水溶性铵化合物包括硫酸铵、氢氧化铵、碳酸铵等等,其中硫酸铵为最佳。亦可混合使用镁化合物和铵化合物。镁化合物或铵化合物加入量应使溶液中的Mg2或NH-4离子浓度为0.05至1.5克分子/升,最好为0.1至1克分子/升。在这种情况下加入的Mg2+或NH+4最适宜的量是使SO2-4离子的克分子浓度为Mg2+或NH+4的克分子浓度的0.1至20倍,最佳是1至10倍。而SO2-4和Mg2+或NH+4的共存是必不可少的,如果Mg2+或NH+4的量相对SO2-4是过剩的话,尽管能够获得单斜氧化锆,但不能得到束状结构。如果Mg2+或NH+4的数量不足,则含有硫酸锆的层状化合物的量就会增加。热液处理可以在120至300℃的温度范围内,最好是在140至230℃范围内,在密闭容器里进行。处理时间可以为10小时至14天,最好是在1至5天。本专利技术所获得的纤维束状凝聚氧化锆微粒,可以用通常分离晶体的过滤和离心法分离,然后烘干。因此法制得的粉末可用作以氧化锆,部份稳化氧化锆、压电体或铁电体为原料的可使其晶体结构定向的陶瓷原料。参照实例可进一步解释本专利技术,但本专利技术并不局限于下述实例。-->实施例1将16克试剂级的氯氧化锆(ZrOCl2·8H2O)溶解在水中,然后添加约10毫升的浓缩氨水。将生成的氢氧化物沉淀过滤出,用水淋洗一次,再在沉淀物中仍残留NH4OH的状态下,添加10克36N的硫酸,使沉淀物完全溶解。液体的总量约200毫升,其中Zr4+浓度约为0.25克分子/升,SO2-4浓度约为0.5克分子/升,NH+4浓度约为0.1克分子/升。溶液密封在聚四氟乙烯容器里,在压热器里加热到150℃,进行热处理并保持2天,以获得白色沉淀物。对沉淀物分离和干燥以后用粉末X-射线衍射法进行分析时,发现全部超细单斜氧化锆晶体的初始晶粒都定向凝聚并在C-轴方向生长成直径约为50A°的纤维状体,并凝聚或聚集成束状结构,其宽度最窄部分约为1000A°,长度约为8000A°,如图1所示。实施例2将试剂级的碳酸氧化和硫酸,按1∶2克分子比混合,以制备含锆浓度约为1克分子/升的水溶液。根据化学分析,Zr4+SO2-4为1∶本文档来自技高网...

【技术保护点】
呈纤维束状的定向超细单斜氧化锆晶体的凝聚微粒,其特征在于,超细单斜氧化锆定向凝聚并在C-轴方向生长成直径小于50埃的细纤维体,然后它们进一步地聚集成宽为300至2000埃,长为2000至10000埃的纤维束状结构。

【技术特征摘要】
【国外来华专利技术】JP 1985-12-10 278528/851、呈纤维束状的定向超细单斜氧化锆晶体的凝聚微粒,其特征在于,超细单斜氧化锆定向凝聚并在C-轴方向生长成直径小于50A°的细纤维体,然后它们进一步地聚集成宽为300至2000A°,长为2000至10000A°的纤维束状结构。2、呈纤维束状的定向超细单斜氧化锆晶体的凝聚微粒的制造方法,其特征在于,在温度为120至300℃下,采用热液加工工艺对酸性水溶液进行处理,获得呈纤维束状形式定向超细...

【专利技术属性】
技术研发人员:加藤悦朗
申请(专利权)人:日产化学工业株式会社
类型:发明
国别省市:JP[日本]

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1