本发明专利技术公开了一种快速测定水体中臭氧含量的方法,包括:实验的准备部分包括ABTS溶液的配制、臭氧标准浓度溶液的配制、含有臭氧残余的水样的预处理、缓冲溶液的配制、抑制剂的准备、反应仪器和容器的准备;仪器分析部分:根据预先估计的臭氧含量范围,选择反应仪器和容器,测定ABTS溶液的吸光度;数据分析处理部分,对测定的数据进行处理,绘制出标准曲线,再通过标准曲线得出标准曲线回归方程,从而计算出未知浓度的臭氧残余量。本发明专利技术依托已有的分光光度法、标准曲线法等,使用ABTS能够快速准确检测出水体中的臭氧含量。本发明专利技术具有耗时少,操作简便,精度高,抗干扰强,可靠性好,所需仪器较少且常用,产物稳定性强的优点。
【技术实现步骤摘要】
本专利技术涉及环境监测
,具体是一种快速测定水体中臭氧含量的方法。
技术介绍
分光光度法测定水体中臭氧的含量已经经历了若干年的发展,衍生出的方法也有二十种以上,现存比较通用的就是直接测定水中臭氧浓度的直接分光光度法和使用Indigo(一种染料)作为指示剂测量其反应后衰减曲线的Indigo法。直接分光光度法利用臭氧在254nm处取得最大吸光度的特性,将含有臭氧的水样直接置于254nm的紫外-可见光分光光度计下,读出读数就是此时臭氧的含量。Indigo法是用Indigo染料作为指示剂,当臭氧与Indigo反应后会降低Indigo的吸光度,因此可以跟标准溶液比较,差值经过计算可得到臭氧含量。这两种方法目前仍广泛应用于测定水体中臭氧残余量的实验研究中。另外还有电子感应测量法,具体是使用一个带有感应探头的测量仪器,直接使用电解液测定臭氧残余量。直接分光光度法测定水体中臭氧含量,精度不高,只能测定260nm处最大峰值,若水体中有其他干扰物质在此峰值,则测定结果将不准确,偏差很大。因此该方法只适合在纯水中测定。Indigo法的峰值才600nm,也仅有一个峰值,当在此处有干扰时,仍然会出现处理结果不准确,且该方法操作比较复杂,耗时长。电子感应测量法操作简单,但是仪器调试和本身精度的限制会对操作结果产生较大影响,且仪器价格昂贵,不便于携带。
技术实现思路
本专利技术的目的在于提供一种快速测定水体中臭氧含量的方法,解决了原有的光度法测定水体中臭氧含量时所遇到的操作不便,耗时较长,精度不高,产物稳定性差以及抗干扰能力差的问题。为实现上述目的,本专利技术提供如下技术方案:一种快速测定水体中臭氧含量的方法,包括以下步骤:(1)实验的准备部分,包括ABTS溶液的配制、臭氧标准浓度溶液的配制、含有臭氧残余的水样的预处理、缓冲溶液的配制、抑制剂的准备、反应仪器和容器的准备;(2)仪器分析部分:根据预先估计的臭氧含量范围,选择反应仪器和容器,测定ABTS溶液的吸光度;(3)数据分析处理部分,对步骤(2)测定的数据进行处理,绘制出标准曲线,再通过标准曲线得出标准曲线回归方程,从而通过标准曲线回归方程计算出未知浓度的臭氧残余量。作为本专利技术进一步的方案:所述ABTS溶液中ABTS的浓度为1g/L。作为本专利技术进一步的方案:所述臭氧标准浓度溶液中臭氧的浓度为0.01-15mg/L。作为本专利技术进一步的方案:所述含有臭氧残余的水样的预处理包括过滤和配制。作为本专利技术进一步的方案:所述缓冲溶液为NaH2PO3和H3PO4的混合溶液,所述缓冲溶液的pH值为2。作为本专利技术进一步的方案:所述抑制剂为甘氨酸,甘氨酸的浓度为50g/L。作为本专利技术进一步的方案:所述反应仪器为紫外-可见分光光度计,所述紫外-可见分光光度计的比色皿的光程为0.2cm-10cm,所述容器为25ml或50ml或100ml的容量瓶。作为本专利技术进一步的方案:所述步骤(2)中,当臭氧含量为0.01-0.1mg/L时,选用5cm光程的比色皿;当臭氧含量为0.1-1mg/L时,选用1cm光程的比色皿;当臭氧含量为1-10mg/L时,选用0.5cm光程的比色皿。与现有技术相比,本专利技术的有益效果是:针对以往检测臭氧技术中的操作不便,仪器昂贵,耗时长,精度不高,抗干扰能力差等弱点,本专利技术创造性提出使用近年来国际上较为流行的检测氧化物含量的物质ABTS(2,2-联氮-二(3-乙基-苯并噻唑-6-磺酸)二铵盐),依托已有的成熟方法-分光光度法、标准曲线法等,能够快速准确检测出水体中的臭氧含量。无论在实验室中纯水测试,或者是实际水样中测试臭氧浓度,本专利技术均显示出极高的精确度和准确性,加之其具有快速,简便,产物稳定性强(可以稳定几个小时)的特点,是一种非常具有潜力的检测臭氧的新方法。本专利技术具有耗时少,操作简便,精度高,抗干扰强,可靠性好,所需仪器较少且常用,产物稳定性强的优点。附图说明图1是一种快速测定水体中臭氧含量的方法的流程图;图2是利用本专利技术测定纯水中的臭氧含量(0.01-0.1mg/L)的标准曲线图;图3是利用本专利技术测定纯水中的臭氧含量(0.1-1mg/L)的标准曲线图;图4是利用本专利技术测定纯水中的臭氧含量(1-10mg/L)的标准曲线图;图5是利用本专利技术测定两种天然水体中的臭氧含量(0.1-1mg/L)的标准曲线图;图6是利用本专利技术测定两种天然水体中的臭氧含量(1-10mg/L)的标准曲线图。具体实施方式下面将结合本专利技术实施例及附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。请参阅图1,本专利技术实施例中,一种快速测定水体中臭氧含量的方法,包括以下步骤:(1)实验的准备部分,包括ABTS溶液的配制、臭氧标准浓度溶液的配制、含有臭氧残余的水样的预处理、缓冲溶液的配制、抑制剂的准备、反应仪器和容器的准备;1)ABTS溶液的配制:ABTS浓度为1g/L的ABTS溶液;2)臭氧标准浓度溶液的配制:臭氧浓度为0.01-15mg/L的臭氧标准浓度溶液;3)含有臭氧残余的水样的预处理:过滤,配制溶液;4)缓冲溶液的配制:选用NaH2PO3和H3PO4混合溶液作为缓冲溶液,调节缓冲溶液的pH值到2;5)抑制剂的准备:选用0.2ml(50g/L)甘氨酸作为抑制剂,防止天然水体中可能存在的游离氯对实验结果产生干扰;6)反应仪器和容器的准备:备好紫外-可见分光光度计、0.2cm-10cm光程的比色皿、若干个25ml或50ml或100ml的容量瓶;(2)仪器分析部分:需要考虑仪器的调试和精度的把握,以及预先对臭氧含量的大概估计;根据臭氧含量的不同,选择不同光程的比色皿(例如:臭氧含量为0.01-0.1mg/L,选用5cm光程的比色皿;臭氧含量为0.1-1mg/L,选用1cm光程的比色皿;臭氧含量为1-10mg/L,选用0.5cm光程的比色皿),具体操作方式如下:在25ml容量瓶中先加入0.2ml(50g/L)甘氨酸,5ml已经配好的缓冲溶液(pH=2),1ml ABTS溶液(1g/L),根据所需要绘制标准曲线的臭氧浓度,以及臭氧原溶液的浓度,计算需要添加的臭氧原溶液的体积,此时容量瓶中的臭氧浓度,需要符合对应光程限制。当测定高浓度的臭氧溶液时,需使用100ml容量瓶作为反应容器,向其中添加1ml(50g/L)的甘氨酸,20ml缓冲溶液(pH=2),以及10ml ABTS溶液(1g/L),为防止局部被过量氧化,20ml去离子水应当被预先加入容器,且反应过程中需要搅拌。5秒反应结束后,在紫外-可见分光光度计下测定ABTS溶液的吸光度;(3)数据分析处理部分,对步骤(2)测定的数据进行处理,绘制出标准曲线,再通过标准曲线得出标准曲线回归方程,从而通过标准曲线回归方程可以计算出未知浓度的臭氧残余量。本专利技术涉及到分光光度法、分光光度计、标准曲线和ABTS,对其进行以下说明:分光光度法是通过测定被测物质在特定波长处或一定波长范围内光的吸光度或发光强度,对该物质进行定性和定量分析的方法。分光光度计,又称光本文档来自技高网...
【技术保护点】
一种快速测定水体中臭氧含量的方法,其特征在于,包括以下步骤:(1)实验的准备部分,包括ABTS溶液的配制、臭氧标准浓度溶液的配制、含有臭氧残余的水样的预处理、缓冲溶液的配制、抑制剂的准备、反应仪器和容器的准备;(2)仪器分析部分:根据预先估计的臭氧含量范围,选择反应仪器和容器,测定ABTS溶液的吸光度;(3)数据分析处理部分,对步骤(2)测定的数据进行处理,绘制出标准曲线,再通过标准曲线得出标准曲线回归方程,从而通过标准曲线回归方程计算出未知浓度的臭氧残余量。
【技术特征摘要】
1.一种快速测定水体中臭氧含量的方法,其特征在于,包括以下步骤:(1)实验的准备部分,包括ABTS溶液的配制、臭氧标准浓度溶液的配制、含有臭氧残余的水样的预处理、缓冲溶液的配制、抑制剂的准备、反应仪器和容器的准备;(2)仪器分析部分:根据预先估计的臭氧含量范围,选择反应仪器和容器,测定ABTS溶液的吸光度;(3)数据分析处理部分,对步骤(2)测定的数据进行处理,绘制出标准曲线,再通过标准曲线得出标准曲线回归方程,从而通过标准曲线回归方程计算出未知浓度的臭氧残余量。2.根据权利要求1所述的快速测定水体中臭氧含量的方法,其特征在于,所述ABTS溶液中ABTS的浓度为1g/L。3.根据权利要求1所述的快速测定水体中臭氧含量的方法,其特征在于,所述臭氧标准浓度溶液中臭氧的浓度为0.01-15mg/L。4.根据权利要求1所述的快速测定水体中臭氧含量的方法,其特征在于,所述含有...
【专利技术属性】
技术研发人员:王涛,
申请(专利权)人:王涛,
类型:发明
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。