本发明专利技术公开了一种惯容器力学输出预测方法。主要包括以下步骤:(1)研制惯容器装置,对惯容器进行力学性能测试,获取不同工况下的响应输出;(2)建立惯容器预测模型,选取输入列向量与输出向量;(3)建立预测模型的训练集与测试集;(4)选择相应的核函数及初始化模型参数;(5)利用量子遗传算法对模型参数进行优化求解,获取最佳的模型参数;(6)将优化后的模型参数代入所构建的预测模型,对训练样本进行训练,并检验模型精度;(7)利用建立的预测模型对惯容器的力学输出进行预测与性能评价。本发明专利技术可为准确掌握惯容器的力学性能与输出预测提供新思路。
【技术实现步骤摘要】
本专利技术涉及一种惯容器力学输出预测方法,特指是基于量子遗传支持向量机的惯容器力学输出预测方法。
技术介绍
惯容器自2002年被提出以来,虽然其隔振潜能已在诸多领域得到证实,但研究中均假想其为理想线性元件,忽视了其非线性影响因素。研究发现,惯容器的非线性因素会显著影响其力学性能,且很难通过数学解析的方式建立其准确的动力学模型。为准确描述并掌握惯容器的动力学作用机理,近年来发展起来的机器学习方法为研究目标提供了可行的参考。支持向量机(Support Vector Machine)是一种基于统计学习理论的机器学习方法,采用结构风险最小化原则,可同时实现样本点误差与结构风险的同时最小化,具有较高的泛化能力,且没有数据维数的限制。量子遗传算法(Quantum Genetic Algorithm)是量子计算与遗传算法相结合的产物,将量子比特的几率幅表示应用于染色体的编码,并利用量子逻辑门旋转实现染色体的更新操作,比常规遗传算法具有更好的效果。因此,本专利技术考虑应用量子遗传算法优化支持向量机的模型参数,以此构建惯容器的力学性能预测模型。
技术实现思路
本专利技术的目的是:提出一种基于量子遗传算法的支持向量机惯容器预测模型,采用量子遗传算法对支持向量机的模型参数进行优化,实现对惯容器力学输出的准确预测。为实现以上专利技术目的,本专利技术采用的技术方案是:提出一种惯容器力学输出预测方法,主要包含以下步骤:(1)研制惯容器装置,对惯容器进行力学性能测试,获取不同工况下的响应输出;(2)建立惯容器预测模型,选取输入列向量与输出向量;(3)建立预测模型的训练集与测试集;(4)选择相应的支持向量机的核函数及初始化模型参数;(5)利用量子遗传算法对模型参数进行优化求解,获取最佳的模型参数;(6)将优化后的模型参数代入所构建的预测模型,对训练样本进行训练,并检验模型精度;(7)利用建立的预测模型对惯容器的力学输出进行预测与性能评价。所述步骤(1)中惯容器的力学性能测试的激励输入为正弦型位移输入,各工况下的激振频率与振幅至少有一项不同。所述步骤(2)中惯容器预测模型的输入列向量由时间序列中的惯容器自由端的位移、速度、加速度组成,输出向量为惯容器两端点的力信号。速度与加速度表达式由位移输入表达式解析求导获得,在Matlab/Simulink模块中搭建速度输入、加速度输入时域曲线,并根据样本数量设定采样时间及数据点个数。所述步骤(3)中样本数据的70%作为预测模型的训练集,样本数据的30%作为测试集。所述步骤(4)中支持向量机的核函数为径向基核函数,初始化模型参数惩罚因子与核函数方差均为1。所述步骤(5)中模型参数的优化求解采用量子遗传算法,种群大小为50,进化代数为100,优化变量的取值范围均设置为[0,10]。所述步骤(6)中模型的精度检验标准为均方差E<0.01,置信度R2>99%。本专利技术的有益实施效果是:(1)利用本专利技术提出的力学输出预测方法,可有效掌握两端点机械元件的动力学行为特性,解决了受非线性因素影响较大而无法建立其解析动力学模型的难题。(2)采用全局搜索能力较强的量子遗传算法对支持向量机的模型参数进行优化,不仅减小了惯容器力学输出预测模型的计算量,更有效的提高了模型的预测精度,其中,预测均方差小于0.01,置信度大于99%,具备较高的预测精度及泛化能力,可以进行更有效的预测并掌握惯容器的动力学作用机理,为后续精确控制打下基础。附图说明下面结合附图和实施例对本专利技术作进一步说明。图1是一种惯容器力学性能预测方法的流程图。图2是0.5Hz力学预测输出时域图。图3是3Hz力学预测输出时域图。图4是10Hz力学预测输出时域图。具体实施方式下面结合附图以及具体实施例对本专利技术作进一步的说明,但本专利技术的保护并非局限于本实施例。一种惯容器力学输出预测方法,如图1所示,主要包括以下步骤:(1)研制惯容器装置,对惯容器进行力学性能测试,获取不同工况下的响应输出。所述惯容器装置的理想线性动力学方程为:F=b(a1-a2)其中,F为惯容器装置两端点受到的一对作用力,b为惯质系数,单位为kg,可由设计参数计算获得,a1、a2为惯容器两端点的加速度。本实施例中所设计的惯容器惯质系数为370kg,力学性能测试采用正弦位移型信号作为激励输入,具体工况为0.1Hz-1Hz的位移输入为20mm,2Hz-9Hz的位移输入为10mm,10Hz-15Hz的位移输入为5mm。采集的输出信号为惯容器两端点的力信号。(2)建立惯容器预测模型,选取输入列向量与输出向量。所构建的预测模型是基于量子遗传支持向量机的预测模型,其中,以惯容器自由端在时间序列中某时刻的位移输入、速度输入与加速度输入组成的列向量构成输入列向量,以惯容器两端点的力信号作为输出向量。由于本实施例的激励输入为正弦型位移输入,其解析表达式为x=A sin(2πft),其中,A为振幅,f为频率。对位移表达式求导可以得到速度表达式为:v=-A*(2πf)cos(2πft),加速度表达式为a=A*(2πf)2sin(2πft)。在Matlab/Simulink模块中搭建速度输入、加速度输入时域曲线,每个周期采集样本数据点20个,每个工况输入为5个周期,由此完成100组样本数据点的采集。(3)建立预测模型的训练集与测试集;在100组测试样本中,任意选取70组样本数据作为预测模型的训练集,另外30组数据作为预测模型的测试集。(4)选择相应的核函数及初始化模型参数;本实施例选取泛化能力与模型预测正确率均较优的径向基核函数进行预测模型的构建,初始化模型参数中,惩罚因子与核函数方差均初始化为1。(5)利用量子遗传算法对模型参数进行优化求解,获取最佳的模型参数;在所建立的70组样本数据训练集中,以训练集预测结果的均方误差作为量子遗传算法的适应度函数,设定遗传算法的种群大小为50,进化代数为100,优化变量的取值范围均设置为[0,10]。量子旋转门的调整操作为: α i ′ β i ′ = c o s ( θ i 本文档来自技高网...
【技术保护点】
一种惯容器力学输出预测方法,其特征在于,主要包含以下步骤:1)研制惯容器装置,对惯容器进行力学性能测试,获取不同工况下的响应输出;2)建立惯容器预测模型,选取输入列向量与输出向量;3)建立预测模型的训练集与测试集;4)选择相应的支持向量机的核函数及初始化模型参数;5)利用量子遗传算法对模型参数进行优化求解,获取最佳的模型参数;6)将优化后的模型参数代入所构建的预测模型,对训练样本进行训练,并检验模型精度;7)利用建立的预测模型对惯容器的力学输出进行预测与性能评价。
【技术特征摘要】
1.一种惯容器力学输出预测方法,其特征在于,主要包含以下步骤:1)研制惯容器装置,对惯容器进行力学性能测试,获取不同工况下的响应输出;2)建立惯容器预测模型,选取输入列向量与输出向量;3)建立预测模型的训练集与测试集;4)选择相应的支持向量机的核函数及初始化模型参数;5)利用量子遗传算法对模型参数进行优化求解,获取最佳的模型参数;6)将优化后的模型参数代入所构建的预测模型,对训练样本进行训练,并检验模型精度;7)利用建立的预测模型对惯容器的力学输出进行预测与性能评价。2.根据权利要求1所述的一种惯容器力学输出预测方法,其特征在于,所述步骤1)中对惯容器进行力学性能测试的激励输入为正弦型位移输入,各工况下的激振频率与振幅至少有一项不同。3.根据权利要求1所述的一种惯容器力学输出预测方法,其特征在于,所述步骤2)中惯容器预测模型的输入列向量由时间序列中的惯容器自由端的位移、速度、加速度组成,输出向量为惯容器两...
【专利技术属性】
技术研发人员:沈钰杰,陈龙,刘雁玲,杨晓峰,张孝良,汪若尘,
申请(专利权)人:江苏大学,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。