Hydrogenation method for producing ultra low sulfur gasoline, full fraction gasoline and / or heavy oil fraction and hydrogen mixture into the first hydrogenation reactor and selective hydrogenation and catalyst diene I contact reaction effluent, the first hydrogenation reactor into second hydrogenation reactor, reaction and after selective hydrogenation desulfurization catalyst II selective control of treated effluent contact; second hydrogenation reactor after removal of hydrogen sulfide into the flash tower after third hydrogenation reactor, reaction and after selective hydrodesulfurization catalyst with selective control of processing contact reactor effluent third hydrogenation reactor after separation by ultra low sulfur gasoline hydrogenation. The invention can be used for the treatment of high sulfur and high olefin catalytic cracking gasoline, the sulfur content of the product is less than 10 g/g, the octane number loss is small, and the gasoline yield is over 99%.
【技术实现步骤摘要】
本专利技术涉及一种在氢存在的情况下,精制烃油的方法,具体地说,是一种生产超低硫汽油的加氢方法。
技术介绍
空气污染是一个严重的环境问题,而大量的发动机排放是造成空气污染的重要原因之一。为保护环境,世界各国对发动机燃料的组成进行了日趋严格的限制,以降低有害物质的排放。由于汽油中的硫会使汽车尾气净化催化剂中毒,严重影响其对排放污染物的处理能力,因此各国汽油质量标准都对硫含量的限制尤为苛刻。欧盟于2009年开始实施欧Ⅴ排放标准,要求汽油硫含量小于10μg/g,还计划在今后实行更为严格的欧VI标准。美国加州第二、三阶段汽油标准中分别规定汽油中硫含量不高于30μg/g、15μg/g。中国已在2014年1月1日开始实施国Ⅳ汽油标准(GB 17930-2011),要求汽油硫含量不大于50μg/g,并将于2018年1月1日开始实施硫含量不大于10μg/g的国Ⅴ汽油标准(GB 17930-2013)。催化裂化汽油是车用汽油的主要调和组分,车用汽油中90%以上的硫来自催化裂化汽油。因此,降低催化裂化汽油的硫含量是降低成品汽油硫含量的关键所在。加氢处理是降低催化裂化汽油硫含量的有效手段之一,通常可采用催化裂化原料加氢处理(前加氢)、催化裂化汽油加氢脱硫(后加氢)两种方式。其中,催化裂化原料加氢处理装置需要在温度和压力均很苛刻的条件下操作,而且处理量大,氢耗大,装置投资和运行成本较高。尽管如此,由于世界原油的重质化,越来越多的催化裂化装置开始处理含有常压渣油、减压渣油等的劣质原料,因此催化裂化原料加氢装置的数量也在逐年增加;加上催化裂化工艺的革新及催化裂化脱硫助剂的广泛应用,部 ...
【技术保护点】
一种生产超低硫汽油的加氢方法,包括:全馏分汽油和/或重汽油馏分与氢气混合后,进入第一加氢反应器与选择性加氢脱二烯催化剂I接触进行反应,脱除其中含有的二烯烃;第一加氢反应器的流出物经换热提温后,进入第二加氢反应器,与经过选择性调控处理的选择性加氢脱硫催化剂Ⅱ接触进行选择性加氢脱硫反应;第二加氢反应器的流出物经换热后,进入闪蒸塔,在气提氢的作用下脱除第二加氢反应器流出物中的硫化氢,然后与氢气混合,经换热和加热炉加热后进入第三加氢反应器,与经过选择性调控处理的选择性加氢脱硫催化剂Ⅲ接触进行选择性加氢脱硫反应,第三加氢反应器的反应流出物进行冷却、分离,分离出的液相物流进入稳定塔,稳定塔底流出物为超低硫的加氢汽油馏分。
【技术特征摘要】
1.一种生产超低硫汽油的加氢方法,包括:全馏分汽油和/或重汽油馏分与氢气混合后,进入第一加氢反应器与选择性加氢脱二烯催化剂I接触进行反应,脱除其中含有的二烯烃;第一加氢反应器的流出物经换热提温后,进入第二加氢反应器,与经过选择性调控处理的选择性加氢脱硫催化剂Ⅱ接触进行选择性加氢脱硫反应;第二加氢反应器的流出物经换热后,进入闪蒸塔,在气提氢的作用下脱除第二加氢反应器流出物中的硫化氢,然后与氢气混合,经换热和加热炉加热后进入第三加氢反应器,与经过选择性调控处理的选择性加氢脱硫催化剂Ⅲ接触进行选择性加氢脱硫反应,第三加氢反应器的反应流出物进行冷却、分离,分离出的液相物流进入稳定塔,稳定塔底流出物为超低硫的加氢汽油馏分。2.按照权利要求1所述的方法,其特征在于所述的重汽油馏分由全馏分汽油切割得到,其切割点为40℃~60℃,切割所得的轻汽油馏分和重汽油馏分的收率分别为全馏分汽油的20~35重量%和65~80重量%。3.按照权利要求1所述的方法,其特征在于第一加氢反应器的反应条件为:氢分压0.8~3.2MPa、反应温度100~200℃、体积空速2~8h-1、氢油体积比200~800Nm3/m3;第二加氢反应器的反应条件为:氢分压0.8~3.2MPa、反应温度200~400℃、体积空速4~8h-1、氢油体积比200~800Nm3/m3;第三加氢反应器的反应条件为:氢分压0.8~3.2MPa、反应温度250~450℃、体积空速6~12h-1、氢油体积比200~800Nm3/m3。4.按照权利要求3所述的方法,其特征在于所述第一加氢反应器的体积空速比第二加氢反应器的体积空速低2~4h-1,所述第三加氢反应器的体积空速比第二加氢反应器的体积空速高2~4h-1。5.按照权利要求3所述的方法,其特征在于所述第一加氢反应器的反应温度比第二加氢反应器的反应温度低100~200℃,所述第三加氢反应器的反应温度比第二加氢反应器的反应温度高30~80℃。6.按照权利要求1所述的方法,其特征在于所述的选择性加氢脱硫催化剂Ⅱ和选择性加氢脱硫催化剂Ⅲ的选择性调控处理包括如下步骤:(a)硫化过程结束后,调整反应系统中气体为催活气体;(b)将催活原料引入反应系统,并在催活反应条件下与催化剂接触24~96小时;(c)催活反应结束后,调整工艺条件为正常反应条件,切换反应进料为全馏分汽油或重汽油馏分;(d)调整反应系统中气体为富氢气体,进行正常反应。7.按照权利要求6所述的方法,其特征在于所述催活气体包括氢气、硫化氢和一氧化碳,以催活气体整体为基准,其中氢气的体积分数不小于70%,硫化氢和一氧化碳的体积分数之和为0.05%~5%。8.按照权利要求7所述的方法,其特征在于所述催活气体中,以催活气体整体为基准,其中氢气的体积分数不小于80%,硫化氢和一氧化碳的体积分数之和为0.3%~2%。9.按照权利要求6所述的方法,其特征在于催活反应条件为:氢分压0.6~2.0MPa、反应温度200~350℃、体积空速1~10h-1、氢油体积比50~4...
【专利技术属性】
技术研发人员:屈锦华,张登前,高晓冬,牛传峰,习远兵,褚阳,田鹏程,李明丰,李大东,
申请(专利权)人:中国石油化工股份有限公司,中国石油化工股份有限公司石油化工科学研究院,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。