当前位置: 首页 > 专利查询>吴本刚专利>正文

电网运行监控信息辨识分类系统技术方案

技术编号:14191906 阅读:102 留言:0更新日期:2016-12-15 11:00
本发明专利技术公开了电网运行监控信息辨识分类系统,包括:信息预处理模块,用于对电网运行监控信息进行预处理,形成有效的告警信息文本;文本特征向量建立模块,用于建立所述有效的告警信息文本的空间特征向量,将告警信息文本中的任意文档表征为一个二维向量;聚类处理模块,用于对所述有效的告警信息文本进行聚类分析;告警信息辨识模块,用于对新生成的告警信息文本进行智能识别,辨识新生成的告警信息文本代表的现实意义。本发明专利技术实现了对告警信号的自动核对和辨识,达到提高电网设备告警信号的辨识效率,防止信号的漏看和错误辨识的现象,保障电网安全稳定运行的目的。

Power network operation monitoring information identification and classification system

The invention discloses a power grid monitoring information identification classification system, including the information preprocessing module, used for monitoring information grid pretreatment, the formation of alarm information of effective text; text feature vector space establishment module, feature vector to establish the effective alarm information text for any document characterization of alarm information in the text for a two-dimensional vector; clustering processing module for alarm information of the effective text clustering analysis; identification module for alarm information, alarm information of the new generation of intelligent text recognition, practical significance of alarm information identification for the representative of the new generation of text. The invention realizes automatic check and identification of alarm signal, alarm signal to improve the identification efficiency of power equipment, to prevent leakage and error identification signal, guarantee the safe and stable operation of power grid to.

【技术实现步骤摘要】

本专利技术涉及电网调度监控的人工智能
,具体涉及电网运行监控信息辨识分类系统
技术介绍
目前绝大部分110kV及以上电压等级的变电站都采用集中监控的模式进行管理,现场电力设备的异常和告警信号都通过通信设施直接传输到调控中心,以文本的形式展示给电网监控人员。相关技术中,关于电网异常信号的监视主要采用人工监屏的方式,设正值一人、副职两人进行监屏。然而人工监屏受到外部影响因素较多,当电网正常操作和电网设备异常时都会发出大量的电气量信号、物理信号,这些异常信号的筛选和辨识会消耗监控人员大量时间,若不能及时判断故障发生情况则会影响事故处理的及时性。而一旦发生信号漏看或辨识错误的现象,则会对电网设备造成不可估量的损失。
技术实现思路
针对上述问题,本专利技术提供电网运行监控信息辨识分类系统。本专利技术的目的采用以下技术方案来实现:电网运行监控信息辨识分类系统,包括信息预处理模块、文本特征向量建立模块、聚类处理模块和告警信息辨识模块;所述信息预处理模块用于对电网运行监控信息进行预处理,将历史告警信号输入,按时段划分告警信号,每隔5秒统计一次最近5秒内发出的监控信息个数,以30s为时间跨度形成对应的监控信息文档,并排除监控信息异常的监控信息文档,最终形成有效的告警信息文本;所述文本特征向量建立模块用于建立所述有效的告警信息文本的空间特征向量,将告警信息文本中的任意文档表征为一个二维向量;所述聚类处理模块用于对所述有效的告警信息文本进行聚类分析;所述告警信息辨识模块用于对新生成的告警信息文本进行智能识别,辨识新生成的告警信息文本代表的现实意义。其中,所述新生成的告警信息文本为由每隔10s统计一次最近30秒的电网运行监控信息组成的告警信息文本。其中,所述聚类处理模块采用改进k-means聚类方法对所述有效的告警信息文本进行聚类分析,具体为:1)将所述有效的告警信息文本具有n个文档,对n个文档进行向量化,通过夹角余弦函数计算所有文档两两之间的相似度,得到相似度矩阵XS;2)对相似度矩阵XS的每一行进行求和,计算出每一个文档与整个告警信息文本的相似度,设XS=[sim(ai,aj)]n×n,i,j=1,…,n,其中sim(ai,aj)表示文档ai,aj间的相似度,求和公式为: XS p = Σ j = 1 n s i m ( a i , a j ) , p = 1 , ... , n ]]>3)按降序排列XSp,p=1,…,n,设XSp按从大到小排列的前4个值为XSmax,XSmax-1,XSmax-2,XSmax-3,若选择与最大值XSmax相对应的文档作为第一个初始的聚簇中心,否则选择与XSmax,XSmax-1,XSmax-2,XSmax-3对应的四个文档的均值作为第一个初始的簇中心,T为设定的比例值;4)将最大值为XSmax对应的矩阵中行向量的元素进行升序排列,假设前k-1个最小的元素为XSpq,q=1,…,k-1,选择前k-1个最小的元素XSpq相对应的文档作为剩余的k-1个初始的聚簇中心,其中所述k值的设定方法为:设定k值可能取值的区间,通过测试k的不同取值,并对区间内的各个值进行聚类,通过比较协方差,确定聚类之间的显著性差异,从而来探査聚类的类型信息,并最终确定合适的k值;5)计算剩余文档与各初始的聚簇中心之间的相似度,将剩余文档分发到相似度最高的聚簇中,形成变化后的k个聚簇;6)计算变化后的聚簇中各文档的均值,将其作为更新后的聚簇中心代替更新前的聚簇中心;7)若更新前的聚簇中心与更新后的聚簇中心相同,或者目标函数达到了最小值,停止更新,此时得到的K个聚簇则基本处于正交形态,其特征向量可以代表不同的典型告警信号模板,通过查看不同聚簇中的文档人工识别该聚簇代表的告警信号的现实意义;所述目标函数为: J = Σ l = 1 k Σ a x ∈ C l | | a x - a x l ‾ | | 2 ]]>其中,Cl表示k个聚簇中的第l个聚簇,ax为第l个聚簇中的文档,为第l个聚簇的中心。其中,所述设定的比例值T的取值范围为[1.45,1.55]。本专利技术的有益效果为:1、以调度监控收到的告警信号为样本,通过聚类分析的方法形成典型告警信号的特征向量,从而实现对告警信号的自动核对和辨识,达到提高电网设备告警信号的辨识效率,防止信号的漏看和错误辨识的现象,保障电网安全稳定运行的目的;2、设置的聚类处理模块采用改进k-means聚类方法对有效的告警信息文本进行聚类分析,有效避免单一采取随机抽样方法所带来的偶然性,解决原有算法在选取k值以及初始化聚类中心时所存在的问题,提高了聚类稳定性,进一步提高了电网运行监控信息辨识的精度。附图说明利用附图对本专利技术作进一步说明,但附图中的实施例不构成对本专利技术的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。图1是本专利技术各模块的连接示意图;图2是本专利技术系统运行的流程示意图。附图标记:信息预处理模块1、文本特征向量建立模块2、聚类处理模块3、告警信息辨识模块4。具体实施方式结合以下实施例对本专利技术作进一步描述。实施例1参见图1、图2,本实施例的电网运行监控信息辨识分类系统,电网运行监控信息辨识分类系统,包括信息预处理模块1、文本特征向量建立模块2、聚类处理模块3和告警信息辨识模块4;所述信息预处理模块1用于对电网运行监控信息进行预处理,将历史告警信号输入,按时段划分告警信号,每隔5秒统计一次最近5秒内发出的监控信息个数,以30s为时间跨度形成对应的监控信息文档,并排除监控信息异常的监控信息文档,最终形成有效的告警信息文本;所述文本特征向量建立模块2用于建立所述有效的告警信息文本的空间特征向量,将告警信息文本中的任意文档表征为一个二维向量;所述聚类处理模块3用于对所述有效的告警信息文本进行聚类分析;所述告警信息辨识模块4用于对新生成的告警信息文本进行智能识别,辨识新生成的告警信息文本代表的现实意义。其中,所述新生成的告警信息文本为由每隔10s统计一次最近30秒的电网运行监控信息组成的告警本文档来自技高网...
电网运行监控信息辨识分类系统

【技术保护点】
电网运行监控信息辨识分类系统,其特征在于,包括信息预处理模块、文本特征向量建立模块、聚类处理模块和告警信息辨识模块;所述信息预处理模块用于对电网运行监控信息进行预处理,将历史告警信号输入,按时段划分告警信号,每隔5秒统计一次最近5秒内发出的监控信息个数,以30s为时间跨度形成对应的监控信息文档,并排除监控信息异常的监控信息文档,最终形成有效的告警信息文本;所述文本特征向量建立模块用于建立所述有效的告警信息文本的空间特征向量,将告警信息文本中的任意文档表征为一个二维向量;所述聚类处理模块用于对所述有效的告警信息文本进行聚类分析;所述告警信息辨识模块用于对新生成的告警信息文本进行智能识别,辨识新生成的告警信息文本代表的现实意义。

【技术特征摘要】
1.电网运行监控信息辨识分类系统,其特征在于,包括信息预处理模块、文本特征向量建立模块、聚类处理模块和告警信息辨识模块;所述信息预处理模块用于对电网运行监控信息进行预处理,将历史告警信号输入,按时段划分告警信号,每隔5秒统计一次最近5秒内发出的监控信息个数,以30s为时间跨度形成对应的监控信息文档,并排除监控信息异常的监控信息文档,最终形成有效的告警信息文本;所述文本特征向量建立模块用于建立所述有效的告警信息文本的空间特征向量,将告警信息文本中的任意文档表征为一个二维向量;所述聚类处理模块用于对所述有效的告警信息文本进行聚类分析;所述告警信息辨识模块用于对新生成的告警信息文本进行智能识别,辨识新生成的告警信息文本代表的现实意义。2.根据权利要求1所述的电网运行监控信息辨识分类系统,其特征在于,所述新生成的告警信息文本为由每隔10s统计一次最近30秒的电网运行监控信息组成的告警信息文本。3.根据权利要求1所述的电网运行监控信息辨识分类系统,其特征在于,所述聚类处理模块采用改进k-means聚类方法对所述有效的告警信息文本进行聚类分析,具体为:1)将所述有效的告警信息文本具有n个文档,对n个文档进行向量化,通过夹角余弦函数计算所有文档两两之间的相似度,得到相似度矩阵XS;2)对相似度矩阵XS的每一行进行求和,计算出每一个文档与整个告警信息文本的相似度,设XS=[sim(ai,aj)]n×n,i,j=1,…,n,其中sim(ai,aj)表示文档ai,aj间的相似度,求和公式为: XS p = Σ j = 1 n s i m ( a i , a j ) , p = 1 , ... , n ]]>3)按降序排列XSp,p=1,…,n,设XSp按从大到小排列的前4个值为XSmax,XSmax-1,XSmax-2,XSmax-3,...

【专利技术属性】
技术研发人员:不公告发明人
申请(专利权)人:吴本刚
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1