The invention discloses a method for evaluating the color quality of online printed matter based on probabilistic neural network algorithm. Including the printing color quality evaluation index selection, probabilistic neural network algorithm model, by supporting online detection equipment to obtain the measured printing color quality evaluation index and the index data input to the algorithm model, this probability model of neural network algorithm can be output after operation for printing color quality evaluation results. The method of probabilistic neural network modeling of time only 0.041313 seconds, can online real-time access to new training samples, can also be modified according to the needs of quality evaluation index, and the algorithm of fast construction model; fault tolerance of this method is high, as long as the online real-time access to more training samples and input optimization algorithms to model the evaluation results of color printing quality; the method of rating stability, the evaluation result accords with the human comprehensive evaluation is very high.
【技术实现步骤摘要】
本专利技术涉及一种在线印刷品色彩质量评价方法,尤其是涉及一种基于概率神经网络算法的在线印刷品色彩质量评价方法。
技术介绍
目前,在印刷生产过程中,印刷机台人员需要对彩色印刷品进行随机抽检,并按照相应质量评价指标对其质量进行评价,在利用多个具有相互影响关系的质量评价指标对印刷品色彩质量作出综合评价时,就需要机台人员根据自己的经验做出综合判断,这就导致综合判断结果的重复性比较差,为了解决此问题,出现了利用特定算法来模拟人眼综合评价印刷品色彩质量过程的评价方法,最终保证印刷品色彩质量能够一直达到最优标准,而人眼对印刷品色彩质量进行综合评价的实质是,首先获取各印刷品综合评价指标,然后结合各评价指标的评级标准通过人脑进行复杂的计算,最后输出印刷品色彩质量评价结果,这一过程属于模式识别的过程,而人工神经网络是进行模式识别的最佳方法,目前用于模拟人眼综合评价的算法有BP人工神经网络算法和模糊人工神经网络算法,但都具有收敛速度较慢,收敛结果并非最优的缺点。
技术实现思路
针对
技术介绍
中的不足,本专利技术的目的在于提供一种基于概率神经网络算法的在线印刷品色彩质量评价方法,该方法可实现在线准确评价印刷品色彩质量,基于概率神经网络收敛速度快的特性,极大地提高印刷品色彩质量评价效率,同时评价结果与人眼综合评价效果符合度非常高。为了解决上述技术问题,本专利技术采用的技术方案是:基于概率神经网络算法的在线印刷品色彩质量评价方法,该方法的步骤如下:1)印刷品色彩质量评价指标的选取;2)概率神经网络算法模型的建立,包括输入层神经元的确定、隐含层神经元的确定、求和层神经元的确定、输出层神经元 ...
【技术保护点】
基于概率神经网络算法的在线印刷品色彩质量评价方法,其特征在于,该方法的步骤如下:1) 印刷品色彩质量评价指标的选取;2) 概率神经网络算法模型的建立,包括输入层神经元的确定、隐含层神经元的确定、求和层神经元的确定、输出层神经元的确定和平滑因子σ的确定;3) 利用配套在线检测设备获取待评价印刷品色彩质量评价指标并将获取的指标数据输入给概率神经网络算法模型;4) 概率神经网络算法模型经过运算输出印刷品色彩质量评价结果,即每个被测印刷品的评价等级。
【技术特征摘要】
1.基于概率神经网络算法的在线印刷品色彩质量评价方法,其特征在于,该方法的步骤如下:1) 印刷品色彩质量评价指标的选取;2) 概率神经网络算法模型的建立,包括输入层神经元的确定、隐含层神经元的确定、求和层神经元的确定、输出层神经元的确定和平滑因子σ的确定;3) 利用配套在线检测设备获取待评价印刷品色彩质量评价指标并将获取的指标数据输入给概率神经网络算法模型;4) 概率神经网络算法模型经过运算输出印刷品色彩质量评价结果,即每个被测印刷品的评价等级。2.根据权利要求1所述的基于概率神经网络算法的在线印刷品色彩质量评价方法,其特征在于:所述印刷品色彩质量评价指标的选择,它是在众多印刷质量评价指标中选择与印刷品色彩质量最有关联的指标,即选择实地密度、网点增大、印刷反差、色差、色相差和灰度共6项国家规定的色彩质量检测指标。3.根据权利要求1所述的基于概率神经网络算法的在线色彩印刷品质量评价方法,其特征在于:所述输入层神经元的确定,它是确定输入层神经元的数量,概率神经网络建立时对采集到的6项色彩质量检测指标做统计学处理,形成一个18维特征向量,而输入层神经元的数量与输入特征向量的维数一致,因此,输入层神经元的数量为18个。4.根据权利要求1所述的基于概率神经网络算法的在线色彩印刷品质量评价方法,其特征在于:所述隐含层神经元的确定,它是确定隐含层神经元的数量,隐含层为径向基层,隐含层神经元的数量与训练样本的数目相同,训练样本即经专家评判出的包含不同色彩质量评价等级的标准样本,理论上训练样本越多,概率神经网络算法的输出结果越准确,实验表明15个训练样本即能达到满意的输出结果,因此,隐含层神经元的数目为15个。5.根据权利要求1所述的基于概率神经网络算法的在线色彩印刷品质量评价方法,其特征在于:所述求和层神经元的确定,它是确定求和层神经元的数量,在对印刷品色彩质量进行评价时,不同的印刷品色彩质量评价等级即为概率神经网络的不同分类模式,将分类模式确定为1、2、3、4共四种,分别对应印刷品色彩质量评价等级的差、中、良、优,...
【专利技术属性】
技术研发人员:司莉莉,吴萍,李继武,
申请(专利权)人:浙江科技学院,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。