基于图像多特征融合的非局部均值去噪方法技术

技术编号:14167357 阅读:82 留言:0更新日期:2016-12-12 14:21
本发明专利技术公开了一种基于图像多特征融合的非局部均值去噪方法,该方法改进了非局部均值去噪方法中图像块间相似度的计算方法,属于图像处理中的图像去噪的研究领域;传统的非局部均值方法采用欧氏距离或高斯加权的欧式距离来衡量块间相似度,这种方式存在一定的缺陷,容易引入不相似图像块,累计造成误差,尤其是在纹理细节区域,无法较好地保持图像的结构信息,降低了去噪性能。针对这样的问题,本方法根据LBP纹理特征来计算图像块之间的相似度,并同时结合LBP特征和灰度特征,进行一种混合相似度计算,最终确定相似图像块的权值分配。基于图像多特征融合的非局部均值去噪方法在去噪效果上得到了显著提升。

【技术实现步骤摘要】

本专利技术涉及图像去噪的
,特别涉及一种基于图像多特征融合的非局部均值去噪方法
技术介绍
图像在形成、传输以及记录过程中,不可避免地会受到噪声的干扰。噪声的引入,不仅降低了图像的质量,而且严重影响图像的后续处理工作。因此,图像去噪成为图像处理中一个基础而重要的步骤,在预处理的基础上,提高图像质量,可以为后续图像处理提供更可靠并真实的依据。图像去噪的最终目的是要在去除噪声的同时,可以更好地保持图像中的边缘、纹理等重要结构信息。那么,如何更好保持图像的边缘、纹理等重要结构信息,成为图像去噪中的重要研究内容。近年来,国内外研究表明,图像中的像素点并不是独立存在、互不相干的,而是同它的周围像素点一起组成图像的几何结构,也就是说像素点的结构特征可以通过以像素为中心的图像块很好的体现出来;另外,在一幅图像中,不仅仅是周围像素,位于不同位置的像素之间常常也是相关联的,即图像具有自相似性。基于图像具有自相似性的原理,Buades等人提出了非局部均值去噪算法。NLM算法用图像块来描述中心像素点的特征,并以图像块之间特征的相似性来代替单个像素点之间灰度值的相似性,此图像块称为相似窗。理论上,参与加权平均的像素点不再局限于待处理像素的周围邻域,而是扩展到整个图像空间。与传统空间域图像去噪算法比较,非局部均值去噪算法更好地保持了图像的结
构信息,取得了更加显著的去噪效果。传统的NLM算法中采用高斯加权欧氏距离来计算权值函数中的相似度,主要有两个优势:第一,由于待处理图像是污染后的噪声图像,若直接取值计算,会影响结果的准确性。而高斯加权具有去噪效果,在一定程度上抑制了噪声,加强了相似度衡量的准确性;第二,通常而言,在空间距离上越相近的像素,它们间的相关性也会越强。而高斯加权就是指在计算欧式距离是,给块中每个像素分配一个服从高斯分布的权值,离块中心越近的像素分配较大的权值。虽然采用高斯加权欧式距离在一定程度上提高了相似度的准确性,但依然存在一些缺陷:(1)若只从图像灰度值的角度考虑相似度,不可避免的会引入不相似的图像块造成过平滑现象,或引入权值计算误差问题,最终影响去噪效果。尤其是针对边缘或纹理细节丰富的图像或图像区域,改误差现象更严重,图像的结构信息丢失更多。(2)由于图像已是含噪图像,若噪声强度较大时,那么单一的基于灰度特征计算得到的相似度的准确性会有所下降。为了解决上述问题,就要探索一种新的相似度计算方法,来提高NLM算法的去噪效果,使其在图像的平坦区域或是结构丰富区域中都能获得优越的去噪效果。而本专利技术就能很好地解决上述问题。
技术实现思路
本专利技术的目的是:提供一种基于图像多特征融合的非局部均值去噪方法,该方法解决了图像块相似度计算中只考虑灰度值特征,而忽略图像其它特征的问题。该方法根据LBP纹理特征来计算图像块之间的相似度,并同时结合LBP特征和灰度特征,进行一种混合相似度计算,最终确定相似图像块的权值分配。基于图像多特征融合的非局部均值去噪方法在去噪效果上得到了显著提升。具体地说,本专利技术是采用以下的技术方案来实现的:基于图像多特征融合的非局部均值去噪方法,其特征在于,根据LBP纹理特征来计算图像块之间的相似度,并同时结合LBP特征和灰度特征,进行一种混合相似度计算,最终确定相似图像块的权值分配,包括如下步骤:1)建立自适应非局部均值去噪的模型:给定离散域I上的一幅噪声图像V={v(i)|i∈I本文档来自技高网
...
基于图像多特征融合的非局部均值去噪方法

【技术保护点】
基于图像多特征融合的非局部均值去噪方法,其特征在于,根据LBP纹理特征来计算图像块之间的相似度,并同时结合LBP特征和灰度特征,进行一种混合相似度计算,最终确定相似图像块的权值分配,包括如下步骤:1)建立自适应非局部均值去噪的模型:给定离散域I上的一幅噪声图像V={v(i)|i∈I},像素点i的相似窗Ni为以像素点i为中心的一个图像子块,去噪后的像素复原值为则利用非局部均值去噪算法,图像中像素的复原值通过求得,其中,权值w(i,j)取决于相似窗Ni和Nj之间的相似程度可由得到,Z(i)是归一化因子,是为了满足0≤w(i,j)≤1和Σjw(i,j)=1,h是滤波参数用于控制图像平滑程度;2)计算图像多特征融合的混合相似度,一方面采用基于灰度特征的高斯加权欧式距离来衡量相似度,另一方面采用基于LBP纹理特征的卡方距离来衡量相似度,通过结合两种特征的混合相似度来计算相似图像块的权值:定义Ni,Nj表示像素i,j所在的图像块即相似窗大小,V(Ni),V(Nj)分别表示两相似窗的灰度向量,根据计算Ni和Nj的高斯加权欧式距离,根据计算Ni和Nj基于灰度值特征的相似度,获取Ni,Nj的LBP特征,由于LBP特征是以直方图形式表示的,使用卡方统计来度量两个LBP特征之间的距离,即可根据计算Ni和Nj之间的距离,根据计算Ni和Nj基于LBP特征的相似度,根据simmix(i,j)=w1simgray(i,j)+w2simlbp(i,j)计算结合灰度特征和LBP纹理特征的混合相似度;3)计算权值:在混合相似度计算方法的基础上,根据计算分配相似图像块的权值;4)遍历图像去噪:根据计算像素点i处的滤波值使像素i遍历整幅图像,重复上述步骤1)~3)进行滤波,得到最终的滤波图像...

【技术特征摘要】
1.基于图像多特征融合的非局部均值去噪方法,其特征在于,根据LBP纹理特征来计算图像块之间的相似度,并同时结合LBP特征和灰度特征,进行一种混...

【专利技术属性】
技术研发人员:周宁宁曹璟
申请(专利权)人:南京邮电大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1