【技术实现步骤摘要】
本专利技术涉及计算机
,尤其涉及一种文本资讯的推荐方法及系统。
技术介绍
随着互联网的迅猛发展,网络资讯的数量不断增长。这给网络用户获取资讯带来了便利,同时也造成了信息过载的问题。如何在海量信息中快速有效地查找并定位到需要的信息成为当前互联网发展中的突出问题,也是网络信息检索研究的热点。为解决上述问题,很多新闻网站通过诸如“相关新闻”、“相关阅读”、“更多新闻”、“相关推荐”、以及“延伸阅读”之类的资讯推荐方式向用户推荐与用户终端上当前显示的新闻相关的其他资讯,作为扩展阅读。目前对于资讯的推荐大多是基于文本TAG的推荐方式,通过提取资讯文本的关键词并按照关键词作为索引来聚合文章,进行资讯推荐时根据关键词索引对应的文章,这种推荐方式存在如下问题:1.无法解决相关资讯的语义歧义与语义相关问题。例如,“富士苹果真好,赶快买”和“苹果iphone6真好,赶快买”,两条资讯虽然在词意上存在相关性,但其语义却并不相关,再例如“如果时间回到2006年,马云和杨致远的手还会握在一起吗”和“阿里巴巴集团和雅虎就股权回购一事签署了最终协议”,两条资讯虽然在词意上并不相关,但其语义却存在相关性。2.未能考虑资讯热度和实时性,用户体验差。例如,“84岁默多克与59岁前超模订婚”与“普莉希拉效应VS邓文迪法则,一定要有真正的邂逅”以及“资产保全Ι鼎元传承FO揭秘:邓文迪也扳不倒的家族信托”,而后两条资讯在当前情况下明显与“默多克”不相关。
技术实现思路
有鉴于此,本专利技术提供一种文本资讯的推荐方法及系统,该方法和系统可以解决资讯推荐时相关资讯的语义歧义与语义相关的问题,并考虑 ...
【技术保护点】
一种文本资讯的推荐方法,其特征在于,所述方法包括:建立资讯推荐池;获取需要推荐资讯文章的文本内容;将需要推荐资讯的文章切分为多个词;根据LDA模型库中词的多维topic分布预测需要推荐资讯文章的多维topic分布;计算需要推荐资讯的文章与资讯推荐池中文章的资讯相关性;根据资讯相关性的计算结果对资讯推荐池中的相关资讯进行排序;根据排序结果输出推荐资讯。
【技术特征摘要】
1.一种文本资讯的推荐方法,其特征在于,所述方法包括:建立资讯推荐池;获取需要推荐资讯文章的文本内容;将需要推荐资讯的文章切分为多个词;根据LDA模型库中词的多维topic分布预测需要推荐资讯文章的多维topic分布;计算需要推荐资讯的文章与资讯推荐池中文章的资讯相关性;根据资讯相关性的计算结果对资讯推荐池中的相关资讯进行排序;根据排序结果输出推荐资讯。2.根据权利要求1所述的文本资讯的推荐方法,其特征在于,需要推荐资讯的文章与资讯推荐池中文章的资讯相关性以需要推荐资讯的文章与资讯推荐池中的文章在多维topic空间中的余弦距离、资讯推荐池中文章的PV加权和过期惩罚来表示。3.根据权利要求1所述的文本资讯的推荐方法,其特征在于,所述文本资讯的推荐方法还包括:获取资讯推荐池中文章的PV热度;以及获取资讯推荐池中文章的发布时间;所述计算需要推荐资讯的文章与资讯推荐池中文章的资讯相关性的步骤指根据需要推荐资讯的文章与资讯推荐池中文章的多维topic分布和资讯推荐池中文章的PV热度和发布时间计算需要推荐资讯的文章与资讯推荐池中文章的资讯相关性。4.根据权利要求1所述的文本资讯的推荐方法,其特征在于,计算需要推荐资讯的文章与资讯推荐池中文章的资讯相关性时采用的公式为: S ( x , x ′ , v , t ) = Σ k = 1 n x k x ′ k Σ k = 1 n x k 2 Σ k = 1 n x ′ k 2 + λ log v ( t + b ) γ , ]]>式中x为需要推荐资讯文章的LDA向量,x’为资讯推荐池中文章的LDA向量,k为文章中LDA向量的个数,v为资讯推荐池中资讯的pv热度,t为资讯过期的时间,b为资讯过期时间的偏置平滑,γ为资讯过期缩放调节系数,λ为回归系数。5.根据权利要求4所述的文本资讯的推荐方法,其特征在于,计算需要推荐资讯的文章与资讯推荐池中文章的资讯相关性时采用的公式中λ的取值为0.25,γ的取值为1.5。6.根据权利要求1所述的文本资讯的推荐方法,其特征在于,所述建立资讯推荐池的步骤包括:收集资讯文本,获取资讯文本的内容;将收集的资讯文本切分为多个词;根据LDA模型库中词的多维topic分布预测资讯文本的多维topic分布;以及将收集的资讯文本按照一定的次序放入资讯推荐池。7.一种文本资讯的推荐系统,其特征在于,其包括:资讯推荐池,其内存储有多篇资讯文本;资讯文本获取模块,用于...
【专利技术属性】
技术研发人员:史继群,
申请(专利权)人:腾讯科技深圳有限公司,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。