一种基于FPGA的高可靠IGBT驱动电路制造技术

技术编号:14157148 阅读:264 留言:0更新日期:2016-12-11 23:31
一种基于FPGA的高可靠IGBT驱动电路,使驱动电路在接收到低电平输入后,不直接输出‑8V电平进行关断,而是输出一小段时间的+14.5V和+7V间的某一个中间电平,比如+9V,再输出‑8V进行关断。由于IGBT的集电极电流与门极开通电压成正比,+9V的门极电平会将IGBT的集电极电流限制在一个较低的值,随后驱动电路再输出‑8V关断IGBT时,产生的电流变化率就不会过大,即实现了对尖峰电压的抑制,保护了IGBT的安全。

【技术实现步骤摘要】

本专利技术涉及一种IGBT驱动电路,尤其是一种基于FPGA的高可靠IGBT驱动电路,属于IGBT驱动电路

技术介绍
IGBT驱动电路,用于实现IGBT的开通与关断。在航天机电伺服系统中,伺服控制驱动器用于驱动伺服电机,而IGBT驱动电路又是伺服控制驱动器中关键电路,其可靠运行对于系统来说至关重要。随着机电伺服功率等级的提升,机电伺服驱动器的工作电压和三相电流在不断攀升,在航天应用中,目前伺服驱动器最高工作电压达到400VDC,相电流可以达到200Arms,在功率器件IGBT关断过程中,由于母线回路的杂散电感的存在,会在功率管CE极间产生尖峰电压,此尖峰电压与相电流变化率成正比,即工作电流越大、变化越快,尖峰电压越高,在IGBT发生短路故障的时候此电压会更高,对IGBT的器件安全运行产生很大威胁。因此,对于工作电压高、相电流大的机电伺服驱动器,需要进行尖峰电压的有效抑制,确保高压大电流伺服驱动器的高可靠运行。IGBT的门极开通电平为+15V,门极关断电平为-8V,常用的关断过程是驱动电路在接收到低电平输入后直接输出-8V对IGBT进行关断,这样的问题是,如果关断前相电流很大,那么关断后形成的电流变化率di/dt将很大,由公式△V=L*(di/dt)可知,尖峰电压△V将很大,如果超过IGBT耐压值,将发生功率器件的击穿。
技术实现思路
本专利技术解决的技术问题为:克服现有技术不足,提供一种基于FPGA的高可靠IGBT驱动电路,对于工作电压高、相电流大的机电伺服驱动器,进行了尖峰电压的有效抑制,确保了高压大电流伺服驱动器的高可靠运行。本专利技术解决的技术方案为:一种基于FPGA的高可靠IGBT驱动电路,包括:FPGA、晶振、比较器A1、放大器A2、功率放大模块、功率放大器A3、NMOS管M1、NMOS管M2、电阻R、NMOS管M3、电容C、齐纳二极管ZD、受控电流源1、受控电流源2、电源管理模块;FPGA包括一个与门和逻辑处理模块、检测控制模块;与门的一个输入连接控制信号IN_PWM,晶振给FPGA提供时钟,逻辑处理电路的输入连接与门的输出,逻辑处理模块能够输出两路信号,其中第一路信号与输入信号电平相同;逻辑处理模块的两路输出分别作为功率放大模块的两路输入,功率放大模块对两路输入的信号进行功率放大后,输出两路放大后的信号,其中第一路送至NMOS管M1的栅极,第二路送至NMOS管M2的栅极;NMOS管M1的漏极连接外部+15V电源,NMOS管M2的源极连接外部-8V电源,NMOS管M1的源极和NMOS管M2的漏级相连,作为基于FPGA的高可靠IGBT驱动电路的输出端OUT,电阻R并联在NMOS管M2的漏级和源极之间;FPGA的检测控制模块的一个输出连接电源管理模块,为电源管理模块提供选择指令信号检测控制模块的一个输入连接控制信号IN_PWM,检测控制模块的另一个输出连接放大器A2的输入,放大器A2的输出连接NMOS管M3的栅极,检测控制模块的输出选择指令信号连接至电源管理模块的输入,电源管理模块的一个输出连接到受控电流源1的输入,另一个输出连接到受控电流源2的输入,受控电流源1的输出和受控电流源2的输出连接到NMOS管M3的漏级和比较器A1的正输入端,NMOS管M3的源级接地,电容C并联在NMOS管M3的漏级和源级之间,齐纳二极管ZD的正极连接NMOS管M3的源级,齐纳二极管ZD的负极连接NMOS管M3的漏级;比较器A1的负输入端连接外部+7V电源,NMOS管M3的漏级还连接功率放大器A3的输入,功率放大器A3的输出连接到基于FPGA的高可靠IGBT驱动电路的输出端OUT,比较器A1的输出连接与门的另一个输入端和检测控制模块的另一个输入。所述输出端OUT为IGBT提供驱动信号。所述当FPGA的检测控制模块检测到IN_PWM输入高电平时,发出控制信号经过放大器A2放大送至NMOS管M3的栅极,使NMOS管M3开通,对电容C进行放电,放电时间在FPGA中设定,确保电容完全放电,然后FPGA的检测控制模块发出关断信号,经过放大器A2放大后送至NMOS管M3的栅极,使NMOS管M3关断,同时FPGA的检测控制模块发出选择指令信号给电源管理模块,电源管理模块输出控制受控电流源1提供恒流源为电容C进行充电,当电容C上的电压超过7V后,比较器A1输出电平的变化被FPGA的检测控制模块检测到后,FPGA的检测控制模块向电源管理模块重新发出选择指令信号,电源管理模块输出信号切断受控电流源1的输出,并开启受控电流源2的输出,受控电流源2的电流比受控电流源1的输出电流大,将电容C的电压充至齐纳二极管的稳压值,在开启受控电流源2的输出后,经过设定的确保电容C充至稳压值的时间后,FPGA的逻辑处理模块发出驱动信号经过功率放大模块放大后送至NMOS管M1的栅极,将NMOS管M1打开,并将NMOS管M2关断,OUT输出高电平+15V,驱动外部IGBT打开。从所述NMOS管M3开通的同时FPGA利用晶振提供的时钟开始进行计时,到所述开启受控电流源2的输出后电容C充至稳压值后停止计时,记改时间为t;当IN_PWM输入低电平给FPGA的与门后,与门输出给逻辑处理模块的输入,逻辑处理模块输出经过功率放大模块放大后输出的第一路放大后的信号送至NMOS管M1的栅极,关断NMOS管M1,此时OUT输出由+15V降落到齐纳二极管ZD上的稳压值,即中间电平,同时FPGA通过晶振开始计时,经过t时间的中间电平保持后,FPGA的逻辑处理模块输出高电平,经过功率放大模块放大后输出的第二路放大后的信号送至NMOS管M2的栅极,开通NMOS管M2,将OUT输出拉低到-8V。完成了一个开通关断周期。一种基于FPGA的高可靠IGBT驱动电路的驱动控制方法,步骤如下:(1)当FPGA的检测控制模块检测到IN_PWM输入高电平时,发出控制信号经过放大器A2放大送至NMOS管M3的栅极,使NMOS管M3开通,对电容C进行放电,放电时间在FPGA中设定,确保电容完全放电;(2)然后FPGA的检测控制模块发出关断信号,经过放大器A2放大后送至NMOS管M3的栅极,使NMOS管M3关断;(3)进行步骤(2)的同时,FPGA的检测控制模块发出选择指令信号给电源管理模块,电源管理模块控制受控电流源1提供恒流源为电容C进行充电,当电容C上的电压超过7V后,比较器A1输出电平的变化被FPGA的检测控制模块检测到后,FPGA的检测控制模块向电源管理模块重新发出选择指令信号,电源管理模块切断受控电流源1的输出,并开启受控电流源2的输出;(4)受控电流源2的电流比受控电流源1的输出电流大,将电容C的电压充至齐纳二极管的稳压值,在开启受控电流源2的输出后,经过设定的确保电容C充至稳压值的时间后,FPGA的逻辑处理模块发出驱动信号经过功率放大模块放大后送至NMOS管M1的栅极,将NMOS管M1打开,并将NMOS管M2关断,OUT输出高电平+15V,驱动外部IGBT打开。(5)从所述NMOS管M3开通的同时FPGA利用晶振提供的时钟开始进行计时,到所述开启受控电流源2的输出后电容C充至稳压值后停止计时,记改时间为t;(6)当IN_PWM输入低电平给FPGA的与门后,与门输出给逻辑处理模块本文档来自技高网...
一种基于FPGA的高可靠IGBT驱动电路

【技术保护点】
一种基于FPGA的高可靠IGBT驱动电路,其特征在于包括:FPGA、晶振、比较器A1、放大器A2、功率放大模块、功率放大器A3、NMOS管M1、NMOS管M2、电阻R、NMOS管M3、电容C、齐纳二极管ZD、受控电流源1、受控电流源2、电源管理模块;FPGA包括一个与门、逻辑处理模块和检测控制模块;与门的一个输入连接控制信号IN_PWM,晶振给FPGA提供时钟,逻辑处理电路的输入连接与门的输出,逻辑处理模块能够输出两路信号,其中第一路信号与输入信号电平相同;逻辑处理模块的两路输出分别作为功率放大模块的两路输入,功率放大模块对两路输入的信号进行功率放大后,输出两路放大后的信号,其中第一路送至NMOS管M1的栅极,第二路送至NMOS管M2的栅极;NMOS管M1的漏极连接外部+15V电源,NMOS管M2的源极连接外部‑8V电源,NMOS管M1的源极和NMOS管M2的漏级相连,作为基于FPGA的高可靠IGBT驱动电路的输出端OUT,电阻R并联在NMOS管M2的漏级和源极之间;FPGA的检测控制模块的一个输出连接电源管理模块,为电源管理模块提供选择指令信号;检测控制模块的一个输入连接控制信号IN_PWM,检测控制模块的另一个输出连接放大器A2的输入,放大器A2的输出连接NMOS管M3的栅极,检测控制模块的输出选择指令信号连接至电源管理模块的输入,电源管理模块的一个输出连接到受控电流源1的输入,另一个输出连接到受控电流源2的输入,受控电流源1的输出和受控电流源2的输出连接到NMOS管M3的漏级和比较器A1的正输入端,NMOS管M3的源级接地,电容C并联在NMOS管M3的漏级和源级之间,齐纳二极管ZD的正极连接NMOS管M3的源级,齐纳二极管ZD的负极连接NMOS管M3的漏级;比较器A1的负输入端连接外部+7V电源,NMOS管M3的漏级还连接功率放大器A3的输入,功率放大器A3的输出连接到基于FPGA的高可靠IGBT驱动电路的输出端OUT,比较器A1的输出连接与门的另一个输入端和检测控制模块的另一个输入。...

【技术特征摘要】
1.一种基于FPGA的高可靠IGBT驱动电路,其特征在于包括:FPGA、晶振、比较器A1、放大器A2、功率放大模块、功率放大器A3、NMOS管M1、NMOS管M2、电阻R、NMOS管M3、电容C、齐纳二极管ZD、受控电流源1、受控电流源2、电源管理模块;FPGA包括一个与门、逻辑处理模块和检测控制模块;与门的一个输入连接控制信号IN_PWM,晶振给FPGA提供时钟,逻辑处理电路的输入连接与门的输出,逻辑处理模块能够输出两路信号,其中第一路信号与输入信号电平相同;逻辑处理模块的两路输出分别作为功率放大模块的两路输入,功率放大模块对两路输入的信号进行功率放大后,输出两路放大后的信号,其中第一路送至NMOS管M1的栅极,第二路送至NMOS管M2的栅极;NMOS管M1的漏极连接外部+15V电源,NMOS管M2的源极连接外部-8V电源,NMOS管M1的源极和NMOS管M2的漏级相连,作为基于FPGA的高可靠IGBT驱动电路的输出端OUT,电阻R并联在NMOS管M2的漏级和源极之间;FPGA的检测控制模块的一个输出连接电源管理模块,为电源管理模块提供选择指令信号;检测控制模块的一个输入连接控制信号IN_PWM,检测控制模块的另一个输出连接放大器A2的输入,放大器A2的输出连接NMOS管M3的栅极,检测控制模块的输出选择指令信号连接至电源管理模块的输入,电源管理模块的一个输出连接到受控电流源1的输入,另一个输出连接到受控电流源2的输入,受控电流源1的输出和受控电流源2的输出连接到NMOS管M3的漏级和比较器A1的正输入端,NMOS管M3的源级接地,电容C并联在NMOS管M3的漏级和源级之间,齐纳二极管ZD的正极连接NMOS管M3的源级,齐纳二极管ZD的负极连接NMOS管M3的漏级;比较器A1的负输入端连接外部+7V电源,NMOS管M3的漏级还连接功率放大器A3的输入,功率放大器A3的输出连接到基于FPGA的高可靠IGBT驱动电路的输出端OUT,比较器A1的输出连接与门的另一个输入端和检测控制模块的另一个输入。2.根据权利要求1所述的一种基于...

【专利技术属性】
技术研发人员:傅捷郑再平李治国黄玉平韩继文
申请(专利权)人:北京精密机电控制设备研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1