【技术实现步骤摘要】
本专利技术属于非饱和土
,特别涉及一种降水入渗土柱模拟系统及非饱和渗透系数测定方法。
技术介绍
降水主要是指降雨和降雪,水分以各种形式从大气到达地面,其它形式的降水还包括露、霜、雹等。降水是水文循环的重要环节,也是人类用水的基本来源。降水资料是分析合理洪枯水情、流域旱情的基础,也是水资源的开发利用如防洪、发电、灌溉等的规划设计与管理运用的基础。降水入渗补给地下水的过程是大气水到土壤水到地下水“三水”相互转换关系中最基本的环节之一,降水入渗对地下水的补给量即为降水补给量,它是地下水的主要补给方式,同时,也是区域水均衡计算中的一个重要均衡要素。土柱实验被广泛应用于农业、林业、地质、土木和环境等研究领域。应用土柱实验可以在实验室内模拟土壤水分和污染物迁移规律。土柱通常分为原状土柱和扰动土柱两种。原状土柱能够用来测试土体本身的结构及其物理性质;当前土柱实验一般采用扰动土柱,扰动土柱是经过筛分形成,或者按照一定比例混合填装所形成的,其不能用来测试土体本身的结构特性。不管采用哪种土柱进行试验,都存在以下问题:①土柱实验装土构件单节长度大,便捷性差,以至于土柱安装困难,对仪器的清洗造成不便;②监测设备安装繁琐,需要对土柱进行钻孔,破坏其结构性;③监测设备一般为人工观测,使得实验精度低、人为性强。非饱和渗透系数与含水量或基质势的关系是描述非饱和土壤中水分运移和溶质输送的重要函数关系之一,是分析降水条件下土坡稳定性、固体废物填埋场、地下污水的迁移和填土工程等问题的重要参数。由于在非饱和土中有基质吸力的存在,不能用常规的饱和渗透实验方法确定其渗透系数,使得非饱和土渗透 ...
【技术保护点】
降水入渗土柱模拟系统,其特征在于,包括底部构件(1)、连接在底部构件(1)上的一个或多个串联的土柱实验标准构件(4)以及土柱实验标准构件(4)顶部的多种形式降水模拟装置(C);所述的底部构件(1)包括位于最下方的底座(1‑1),底座(1‑1)上的集水点通过塑料软管(2)接入出渗量量杯(3),塑料软管(2)上设置有第三流量传感器(3‑1),第三流量传感器(3‑1)接入计算机(7);底座(1‑1)的上方设置有承力柱(1‑2),承力柱(1‑2)的上部设置有高进气值陶土板(1‑3),高进气值陶土板(1‑3)的四周边沿均与底部构件(1)管件(1‑7)的内壁水平紧贴,高进气值陶土板(1‑3)的顶部设置有滤纸(1‑4),滤纸(1‑4)的上表面与原状土样(12)接触;管件(1‑7)的顶端设置有外螺纹连接段(1‑6),外螺纹连接段(1‑6)通过法兰(6)与土柱实验标准构件(4)连接;所述土柱实验标准构件(4)由两个相同的半圆柱体经卡箍(4‑30)通过土柱实验标准构件(4)管壁(4‑1)的卡箍凹槽(4‑3)处连接成一个圆柱体,土柱实验标准构件(4)的管壁(4‑1)上设置有圆形小孔(4‑4),圆形小孔(4‑ ...
【技术特征摘要】
1.降水入渗土柱模拟系统,其特征在于,包括底部构件(1)、连接在底部构件(1)上的一个或多个串联的土柱实验标准构件(4)以及土柱实验标准构件(4)顶部的多种形式降水模拟装置(C);所述的底部构件(1)包括位于最下方的底座(1-1),底座(1-1)上的集水点通过塑料软管(2)接入出渗量量杯(3),塑料软管(2)上设置有第三流量传感器(3-1),第三流量传感器(3-1)接入计算机(7);底座(1-1)的上方设置有承力柱(1-2),承力柱(1-2)的上部设置有高进气值陶土板(1-3),高进气值陶土板(1-3)的四周边沿均与底部构件(1)管件(1-7)的内壁水平紧贴,高进气值陶土板(1-3)的顶部设置有滤纸(1-4),滤纸(1-4)的上表面与原状土样(12)接触;管件(1-7)的顶端设置有外螺纹连接段(1-6),外螺纹连接段(1-6)通过法兰(6)与土柱实验标准构件(4)连接;所述土柱实验标准构件(4)由两个相同的半圆柱体经卡箍(4-30)通过土柱实验标准构件(4)管壁(4-1)的卡箍凹槽(4-3)处连接成一个圆柱体,土柱实验标准构件(4)的管壁(4-1)上设置有圆形小孔(4-4),圆形小孔(4-4)与橡胶塞(5-7)配合使用;多个土柱实验标准构件(4)通过法兰(6)将上下端的螺纹连接段(4-2)进行连接;插入件(5)通过橡胶塞(5-7)插入原状土样(12)内,插入件(5)内传感器所采集的数据都实时传输给计算机(7),土壤热传导吸力探头(4-7)经圆形小孔(4-4)插入原状土样(12)内;土壤热传导吸力探头(4-7)内传感器所采集的数据都实时传输给计算机(7);土柱实验标准构件(4)上固定有多个测压管(4-9),多个测压管(4-9)的每个入水口经圆形小孔(4-4)插入原状土样(12)内;所述的插入件(5)在土柱上按照同一列布置,土壤热传导吸力探头(4-7)在土柱上按照同一列布置,测压管(4-9)在土柱上按照同一列布置。2.根据权利要求1所述的降水入渗土柱模拟系统,其特征在于,所述的承力柱(1-2)包括承力柱支座(1-22)以及固定在其上的承力柱主体(1-21),所述承力柱支座(1-22)与底座(1-1)为一体成型,承力柱支座(1-22)在土柱竖向投影按照“一个圆心+以底座(1-1)半径1/2为半径的圆周向五等份”方式布置;承力柱主体(1-21)长度不同使得底座(1-1)呈现坡度;所述的土柱底部构件(1)、土柱实验标准构件(4)及圆柱构件(10)均由耐高温玻璃钢制成。3.根据权利要求1所述的降水入渗土柱模拟系统,其特征在于,所述的插入件(5)的最前端设置有插入针头(5-6),插入件(5)内部管道的转角处设置有橡胶垫片(5-1),内部管道中设置有弹出件(5-2),弹出件(5-2)包括温湿度传感器探头(4-5)或冷热一体金属元件(4-6),弹出件(5-2)后端与导线(9)进行连接,弹出件(5-2)的尾部套设有轻质弹簧(5-4),轻质弹簧(5-4)的末端设置有探针控制器(5-5),插入件(5)的外侧中段设置有挡板(5-3)。4.根据权利要求1所述的降水入渗土柱模拟系统,其特征在于,所述圆形小孔(4-4)形状大小与橡胶塞(5-7)相一致且结合紧密,排布方式为:纵向上相隔排列且遵循上密下疏原则,横向上绕土柱实验标准构件(4)外圆周长8等分排布。5.根据权利要求1所述的降水入渗土柱模拟系统,其特征在于,所述的卡箍(4-30)由两半圆环钢圈(4-34)组成并通过一端的铆钉(4-35)铆接,卡箍(4-30)的另一端接头(4-33)通过螺丝杆(4-31)和螺母(4-32)来调节卡箍(4-30)的松紧程度,使标准圆柱构件紧密结合;所述的法兰(6)内侧设有法兰螺纹(6-1),法兰(6)的两端设置有转动把手(6-2)。6.根据权利要求1所述的降水入渗土柱模拟系统,其特征在于,所述的计算机(7)的信号端与微控制器(7-0)的信号端相连,微控制器(7-0)设置有温度探测输入端(7-1)、温湿度探测输出端(7-2)、基质吸力探测输出端(7-3);温度探测输入端(7-1)经导线(9)连接冷热一体金属元件(4-6),温湿度探测输出端(7-2)经导线(9)连接温湿度传感器探头(4-5),基质吸力探测输出端(7-3)经导线(9)连接土壤热传导吸力探头(4-7)。7.根据权利要求1所述的降水入渗土柱模拟系统,其特征在于,所述的多种形式降水模拟装置(C)包括低强度降雨全入渗模拟装置(16)、中强度降雨有径流入渗模拟装置(17)、高强度降雨稳定入渗模拟装置(14)和融雪入渗模拟装置(8);所述的低强度降雨全入渗模拟装置(16)包括外侧刻有刻度的输水水桶(16-1),输水水桶(16-1)的下方通过输水管(16-12)与降雨喷头(16-9)连通,降雨喷头(16-9)设置于土柱实验标准构件(4)上部的圆柱构件(10)顶部,圆柱构件(10)内高出原状土样(12)上表面2-5厘米处设置有抗水压冲击板(A),抗水压冲击板(A)上设置有筛孔;U型水头控制管(10-2)内的水面上设置有轻质塑料片(16-8),所述轻质塑料片(16-8)形式为薄圆片,所述轻质塑料片(16-8)上方的圆形凹槽内设置有永久磁铁(16-7),永久磁铁(16-7)的正上方设置有拉线(16-3)吊挂的电线圈(16-6),电线圈(16-6)外接有导线(9),拉线(16-3)的上端缠于转轮(16-2)上,转轮(16-2)上设置有把手(16-4),转轮(16-2)上端用拉线(16-3)通过着力构件(16-11)的小孔与止水阀(16-5)下部相连接,止水阀(16-5)下端设置有轻质弹簧(16-10),所述圆柱构件(10)与U型水头控制管(10-2)相连接,轻质塑料片(16-8)、永久磁铁(16-7)和电线圈(16-6)都在U型水头控制管(10-2)的滑槽(16-13)内运动;所述滑槽(16-13)嵌于U型水头控制管(10-2)内壁,所述电线圈(16-6)按照边沿处三等分设置有滑轨(16-14),所述滑轨(16-14)可在滑槽(16-13)内自由上下运动;所述的低强度降雨全入渗模拟装置(16)控制原状土样(12)表面水位高度低于1mm;所述的中强度降雨有径流入渗模拟装置(17)包括设置在圆柱构件(10)内的降雨容器(17-9)和设置在降雨容器(17-9)底部的圆形降雨孔(17-10),圆柱构件(10)内高出原状土样(12)上表面2-5厘米处设置有抗水压冲击板(A),抗水压冲击板(A)上设置有筛孔;所述降雨容器(17-9)的顶部设置有降雨容器内压力控制管(17-8)和与外部水源连接的进水管(17-7);所述进水管(17-7)上设置有进水电磁阀(17-2)、进水水泵(17-1)和用于对降雨量进行实时监测的第一流量传感器(17-3);所述降雨容器内压力控制管(17-8)上设置有压力控制电磁阀(17-5)和压力传感器(17-6),所述降雨容器内压力控制管(17-8)的尾部连接有空气压缩机(17-4);所述降雨容器(17-9)的顶部内壁上设置有用于对降雨容器(17-9)的水位进行实时监测的水位传感器(17-11);所述圆柱构件(10)内的原状土样(12)上表面外侧开有出水口(10-1),出水口(10-1)通过塑料软管(2)接入径流量量杯(13),所述塑料软管(2)上设置有第二流量传感器(13-1),所述第二流量传感器(13-1)通过导线(9)接入计算机(7);所述的高强度降雨稳定入渗模拟装置(14)包括外侧刻有刻度的输水水桶(14-1),输水水桶(14-1)的下方通过输水管(14-12)与降雨喷头(14-9)连通,降雨喷头(14-9)设置于土柱实验标准构件(4)上部的圆柱构件(10)顶部,圆柱构件(10)内高出原状土样(12)上表面2-5厘米处设置有抗水压冲击板(A),抗水压冲击板(A)上设置有筛孔;U型水头控制管(10-2)内的水面上设置有轻质塑料片(14-8),所述轻质塑料片(14-8)形式为薄圆片,所述轻质塑料片(14-8)上方的圆形凹槽内设置有永久磁铁(14-7),永久磁铁(14-7)的正上方设置有拉线(14-3)吊挂的电线圈(14-6),电线圈(14-6)外接有导线(9),拉线(14-3)的上端缠于转轮(14-2)上,转轮(14-2)上设置有把手(14-4),转轮(14-2)上端用拉线(14-3)通过着力构件(14-11)的小孔与止水阀(14-5)下部相连接,止水阀(14-5)下端设置有轻质弹簧(14-10),所述圆柱构件(10)与U型水头控制管(10-2)相连接,轻质塑料片(14-8)、永久磁铁(14-7)和电线圈(14-6)都在U型水头控制管(10-2)的滑槽(14-13)内运动;所述滑槽(14-13)嵌于U型水头控制管(10-2)内壁,所述电线圈(14-6)按照边沿处三等分设置有滑轨(14-14),所述滑轨(14-14)可在滑槽(14-13)内自由上下运动;所述的高强度降雨稳定入渗模拟装置(14)控制原状土样(12)表面水位高度高于1cm以上。8.根据权利要求7所述的降水入渗土柱模拟系统,其特征在于,所述的融雪入渗模拟装置(8)包括设置在土柱外侧的温度控制器(8-1)以及通过导线(9)与其所连接的调温元件(8-3),所述调温元件(8-3)位于顶盖(8-2)下方,顶盖(8-2)的顶部设置有超声波测距传感器(8-4),顶盖(8-2)位于土柱实验标准构件(4)上部的圆柱构件(10)的上方且紧密接触,圆柱构件(10)内的原状土样(12)上表面外侧开有出水口(10-1),所述出水口(10-1)通过塑料软管(2)接入径流量量杯(13),塑料软管(2)上设置有第二流量传感器(13-1),所述第二流量传感器(13-1)通过导线(9)接入计算机(7),原状土样(12)上设置有碎冰(11)。9.基于上述任一权利要求所述的降水入渗土柱模拟系统的非饱和渗透系数测定方法,其特征在于,包括以下步骤:步骤一、组装土柱实验标准构件分别对土柱实验标准构件(4)的两块半圆柱体管壁(4-1)进行拼接,对土柱实验标准构件(4)的接缝进行密封及防水处理,然后把卡箍(4-30)套在卡箍凹槽(4-3)上,并通过扳手上紧套在螺丝杆件(4-31)上的螺母(4-32),使卡箍(4-30)牢固地套在卡箍凹槽(4-3)上,然后将多个土柱实验标准构件(4)通过法兰(6)串联实现纵向拼接;步骤二、安装原状土样选取预先准备好的原状土样(12),将原状土样(12)竖立在地面上,将已经连接好的多个土柱实验标准构件(4)套住原状土样(12),将原状土样(12)与土柱实验标准构件(4)之间的缝隙采用密封及防水处理保证后续实验时水不从缝隙直接流下;步骤三、组装土柱实验仪器设备先将底座(1-1)放置于水平地面上,然后将承力柱主体(1-21)套放在对应的承力柱支座(1-22)上,将高进气值陶土板(1-3)水平放置于承力柱主体(1-21)上方,所述高进气值陶土板(1-3)上表面铺设有滤纸(1-4),所述承力柱主体(1-21)、高进气值陶土板(1-3)、滤纸(1-4)均位于管件(1-7)内部;在集水处最低位置设置一个出水孔外接塑料软管(2),将所述塑料软管(2)的另一端接入出渗量量杯(3),其中所述塑料软管(2)上安装第三流量传感器(3-1),所述第三流量传感器(3-1)通过导线(9)接入计算机(7);将法兰(6)的法兰螺纹(6-1)对准外螺纹连接段(1-6),通过转动把手(6-2)将法兰(6)紧密地安装在底部构件(1)上方,然后将拼接组装而成的土柱实验标准构件(4)连同其套住的原状土样(12)通过土柱实验标准构件(4)的底部螺纹连接段(4-2)与所述底部构件(1)上端的法兰(6)的法兰螺纹(6-1)进行组装,使拼接组装而成的土柱实验标准构件(4)连同其套住的原状土样(12)位于底部构件(1)滤纸(1-4)的正上方,最后通过法兰(6)将圆柱构件(10)进行连接;步骤四、测定原状土样的初始状态原状土样(12)的初始含水率:多个温湿度传感器探头(4-5)分别对原状土样(12)的湿度进行一次监测,并将监测到的信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的湿度信号,并将各个测试点处原状土样(12)的湿度信号记录为各个测试点处原状土样(12)的初始含水率θc;原状土样(12)的初始温度:多个温湿度传感器探头(4-5)分别对原状土样(12)的温度进行一次监测,并将监测到的信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的温度信号,并将各个测试点处原状土样(12)的温度信号记录为各个测试点处原状土样(12)的初始温度Tc;原状土样(12)的基质吸力:多个土壤热传导吸力探头(4-7)分别对原状土样(12)的基质吸力进行一次监测,并将监测到的信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的基质吸力信号,并将各个测试点处原状土样(12)的基质吸力信号记录为各个测试点处原状土样(12)的初始基质吸力Fac;原状土样(12)的水头高度:多个测压管(4-9)分别对原状土样(12)的水头高度进行监测得到各个测试点初始阶段对应的水头高度hc;原状土样(12)的饱和含水率:将原状土样(12)的取样地点带回的其它土样进行饱和含水率测定,作为原状土样(12)的饱和含水率;取土样放入称量盒内,为其注水直至水面浸没土样,浸没10分钟之后将多余的水清除,称质量为m,之后将土样和称量盒放入烘箱内,进行烘干,之后将其置于天平上进行称重得质量为ms,之后利用公式计算求得原状土样(12)的饱和含水率θsat;步骤五、模拟四种水力边界条件根据测试要求,多种形式降水模拟装置(C)配合土柱实验标准构件(4)工作来模拟四种水力边界条件,即低强度降雨全入渗边界条件、中强度降雨有径流入渗边界条件、高强度降雨稳定入渗边界条件和融雪入渗边界条件;步骤六、模拟过程中的各参数监测多个温湿度传感器探头(4-5)分别对模拟过程中的原状土样(12)的温湿度进行监测,并将监测到的信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的温度、湿度信号,并将各个测试点处原状土样(12)的温度、湿度信号记录为各个测试点记录时刻对应的温度Ti、含水率θi;多个土壤热传导吸力探头(4-7)分别对模拟过程中的原状土样(12)的基质吸力进行监测,将监测到的基质吸力信号传给微控制器(7-0),微控制器(7-0)将监测信号通过串口通信电路实时传输给计算机(7),计算机(7)接收并记录多个测试点处原状土样(12)的基质吸力信号,并将各个测试点处原状土样(12)的基质吸力信号记录为各个测试点记录时刻对应的基质吸力Fa;多个测压管(4-9)分别对原状土样(12)的水头高度进行监测得到各个测试点记录时刻对应的水头高度hi;上述所有的监测,其监测时间频率设置如下:降水入渗5分钟内,记录时间间隔为5秒,降水入渗5-15分钟内,记录时间间隔为10秒,降水入渗15-30分钟内,记录时间间隔为15秒,降水入渗30-60分钟内,记录时间间隔为20秒,降水入渗60分钟以后记录时间间隔为60秒,直到实验达到稳定后2-4小时以上;步骤七、模拟过程中监测结果分析对所记录的某一时刻的温度Ti、基质吸力Fa监测数据做插值处理,得到某一时刻原状土样(12)所对应的温度云图和基质吸力云图;同时对所记录的某一时刻原状土样(12)所对应的含水率θi监测数据做插值处理,得到某一时刻原状土样(12)对应的含水率云图;依据含水率云图的变化规律,找出每个时刻所对应的湿润前锋的位置,所述湿润前锋的位置指的是湿润带的边缘,与下部未湿润带之间含水率存在明显突变的部分,各位置连线形成湿润前锋线,从而观察湿润前锋位置随时间t的变化规律;根据含水率云图,依据含水率的大小,找出每个时刻所对应的饱和含水率θsat的等值线,从而确定完全饱和带,所述完全饱和带定义是土柱上表面以下一定深度内出现水分完全饱和的部分;当湿润前锋与完全饱和带在同一监测时刻出现时,所述湿润前锋线与饱和含水率θsat等值线之间的区域被定义为降水入渗过渡带;绘制基质吸力Fa和含水率θi的关系图,从而分别得到各土层的土-水特征曲线;步骤八、降水入渗系数计算根据公式Qr=Qz-Qj,计算得到降水入渗量Qr,单位为cm3;其中Qz为总降水量,单位为cm3;Qj为降水径流量,单位为cm3;根据公式△S=Qr-Qc,计算得到降水入渗的水分亏损量△S,单位为cm3;其中Qr为降水入渗量,单位为cm3;Qc为降水出渗量,单位为cm3;根据公式Vr=Qr/t计算得到降水入渗率Vr,单位为cm3/s;其中Qr为降水入渗量,单位为cm3;t为实验测试时间,单位为s;根据公式Vc=Qc/t计算得到降水出渗率Vc,单位为cm3/s;其中Qc为降水出渗量,单位为cm3;t为实验测试时间,单位为s;根据公式α=Qc/Qz计算得到降水入渗系数α,单位为无量纲;其中Qc为降水出渗量,单位为cm3;Qz为总降水量,单位为cm3;步骤九、非饱...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。