本发明专利技术公开了一种中碳钢表面微纳米多尺度结构的制备方法,该方法采用微粒喷丸法在中碳钢表面原位构筑多尺度结构,得到微纳米多尺度结构的中碳钢表面,再经低表面能试剂进行化学修饰,使其具有超疏水特性。所述低表面能试剂为氟硅烷/无水乙醇溶液或氟硅烷/正己烷溶液。本发明专利技术对设备无特殊要求,具有工艺灵活简单、制备成本低、原位构筑多尺度结构,同时强化中碳钢表面的特点,尤其是表面多尺度结构的形貌可控。
【技术实现步骤摘要】
本专利技术属于超疏水表面制备领域,更具体地,涉及一种金属材料表面微纳米多尺度结构的制备方法及其应用。
技术介绍
中碳钢因其价格低,取材容易,易加工,力学性能良好等特点而被广泛应用于建筑、机械、交通运输等领域。面对如此众多的应用,除力学性能外,中碳钢还需具备一些表面性能,如自清洁、抗沾污、水下减阻等。若要获得这些表面特性,就需要使中碳钢表面具备超疏水性。固体表面超疏水性主要关乎表面的物理和化学状态两方面,分别指表面粗糙因素(rough factor)和表面能(surface energy)。因此,通常采用以下两类方法制备固体超疏水表面:一类是对具有低表面能的表面进行粗化处理,以使低能表面变粗糙,此方法仅在具有低表面能的有机聚合物固体材料上可以实施,而其显然不适用于中碳钢材料。另一类则用于不具备低能表面的固体物质,包括金属和非金属。对粗糙表面进行化学修饰,以使其粗糙表面具有低表面能,常适用于中碳钢材料。以使粗糙表面具有低表面能,常适用于中碳钢材料。为了在金属基体上构筑粗糙表面,已有的方法包括需大型设备才能完成的激光蚀刻、气相沉积等,也包括简便易行的电沉积、化学沉积、阳极氧化、化学蚀刻等。其中,阳极氧化对钝化型金属,又称作阀金属(valve metal),如Al、Mg、Ti等适用,而对中碳钢并不太适用;激光蚀刻和气相沉积对中碳钢适用,但成本高;电沉积和化学沉积简便,但存在涂层与基体结合力问题;化学蚀刻简单易行,但对粗糙结构的形貌可控度不高。专利CN105386032A和CN105386101A采用了喷砂法粗化金属表面来制备超疏水表面,是以石英砂、钢砂等作介质,砂呈无规则形状,主要作用在于清理表面和粗化基体,但所获得的表面多尺度凹凸形貌具有不可控的缺点。
技术实现思路
本专利技术的目在于克服现有技术中中碳钢超疏水表面的制备方法的缺点,提供一种在中碳钢表面制备微纳米多尺度结构的方法,该方法不需大型设备,工艺灵活简单、制备成本低,原位构筑多尺度粗糙结构且形貌可控,同时强化中碳钢表面,并使其具有超疏水结构。本专利技术上述目的是通过以下技术方案予以实现:一种中碳钢表面微纳米多尺度结构的制备方法,包括如下具体步骤:S1.先用120~1000目砂纸打磨中碳钢表面,再用抛光剂上对中碳钢表面进行抛光处理5~10min,预处理中碳钢表面得到抛光面;S2.采用微粒喷丸工艺,将步骤S1处理过的中碳钢安装在喷丸机内装夹台上,设置喷枪喷嘴与待喷丸的抛光面距离为5~15cm,喷丸压力为0.1~0.4MPa,接通喷丸机电源,并接通空气压缩机,用微粒喷丸对中碳钢进行处理,原位构筑表面粗糙结构,用清洗后冷风吹干;S3.将步骤S2处理过的中碳钢浸泡在低表面能试剂中进行化学修饰,后经清洗并吹干,得到具备超疏水特性的中碳钢表面。优选地,步骤S1中所述的抛光剂为金刚石悬浮液或金刚石抛光膏。优选地,步骤S2中所述的微粒弹丸为雾化不锈钢球形弹丸,弹丸平均直径为50μm和150μm。优选地,步骤S2中所述微粒喷丸工艺分为A或B任意一种,其中,A工艺采用两道次微粒喷丸,是先用平均直径为150μm的弹丸喷射中碳钢表面,喷射时间为1~4min,再用平均直径为50μm的弹丸喷射中碳钢表面,喷射时间为1~7min,得到多尺度的表面结构;B工艺采用单道次混合弹丸喷丸,将平均直径为150μm和50μm的弹丸按总质量比为1:1~2的比例混合,用混合弹丸喷射中碳钢表面,喷射时间为1~7min,得到多尺度的表面结构。优选地,步骤S3中所述低表面能试剂为氟硅烷/无水乙醇溶液或氟硅烷/正己烷溶液,浸泡时间为10~60min。优选地,步骤S2和S3中所述清洗所用的溶液为无水乙醇。本专利技术中实现了多尺度粗糙结构的构筑,对于单颗弹丸而言,直径为微米级的球形弹丸,在压缩气体的推动下,撞击中碳钢表面,中碳钢表面发生塑性变形从而形成尺寸低于弹丸直径的凹坑。不同尺寸的弹丸产生不同尺寸的凹坑,在遭受大量弹丸撞击后,这些大小各异的凹坑会叠加、重合,中碳钢表面形成凹凸有致的粗糙纹理,即目标粗糙结构。另外,喷射介质也起到关键的作用,通常喷砂所用的石英砂或钢砂形状不规则,颗粒大,易碎,表面微纳多尺度形貌不可控;而玻璃珠和陶瓷珠也存在颗粒大易碎的问题。本专利技术所用弹丸为雾化不锈钢丸,其为细小的球形微粒,且有一定韧性,相比之下不易碎,通过弹丸混合或者是多道次喷丸,可完成多尺度粗糙结构的构筑。而且通过氟硅烷修饰,降低了中碳钢表面自由能,利用协同效应在粗糙的表面上实现具有超疏水性的结构。本专利技术原位构筑多级尺度粗糙结构,规避了通常采用的沉积方法制备粗糙结构时,在金属表面沉积一层具有粗糙形貌的外来涂层而存在的结合力问题。除了可调节弹丸直径及其比例外,喷丸过程涉及的工艺参数还有:喷丸时间,喷丸压力,喷丸距离(喷嘴与待喷丸的抛光面的距离)。改变喷丸时间等效于改变撞击次数,最终改变了弹坑的数量和弹坑在中碳钢表面的覆盖率;弹丸在压缩空气的推动下获得速度,气压不同,弹丸速度则不同,所获动能也不同。因此,改变喷丸压力等效于改变撞击力,最终改变了弹坑的深度;改变喷丸距离等效于改变弹丸流辐射面大小,最终改变了中碳钢表面受喷区域的大小。对以上参数进行调整,可实现对粗糙结构形貌的调控。与现有技术相比,本专利技术具有以下有益效果:1.本专利技术通过两道次微粒喷丸工艺和单道次混合弹丸喷丸工艺两种可选方法,实现在中碳钢表面原位构筑多级尺度粗糙结构,很好地解决了沉积方法制备表面粗糙结构存在的涂层与基体结合力问题。2.本专利技术通过调节弹丸直径及其比例构筑中碳钢表面粗糙结构,同时通过调整喷丸过程的工艺参数,比如喷丸时间,喷丸压力,喷嘴与中碳钢表面间的喷丸距离等,实现对粗糙结构形貌的调控。3.本专利技术在实现中碳钢表面粗糙结构的构筑之外,还强化了中碳钢表面。而且不需要大型设备,仅需小型气动喷丸机即可实现所有操作,因此制备成本低。附图说明图1为两道次法在中碳钢表面构筑粗糙结构过程的示意图。a为单弹丸撞击中碳钢表面示意图;b为在中碳钢表面构筑粗糙结构示意图。其中:1为单颗弹丸,2为中碳钢表面,3为单个弹坑,4为两道次喷丸时第一道多弹丸撞击造成的表面粗糙结构,5为两道次喷丸造成的多尺度粗糙结构。图2为实施例1微粒喷丸后中碳钢表面形貌原子力显微镜的3D图。图3为水滴在实施例1制备的微纳多尺度结构的中碳钢表面的影像图。具体实施方式下面结合说明书附图和具体实施例进一步说明本专利技术的内容,但不应理解为对本专利技术的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本专利技术采用的试剂、方法和设备为本
常规试剂、方法和设备。实施例1两道次喷丸法在中碳钢表面制备多尺度结构1.预处理:先用120目、280目、320目、400目、600目、800目、1000目砂纸依次打磨45#中碳钢(其中C为0.42~0.50%,Si:0.17~0.37%,Mn:0.50~0.80%,P:≤0.035%,S:≤0.035%,Cr:≤0.25%)表面,后在抛光机上用1μm金刚石悬浮液对磨平面进行抛光,得到抛光面,为表面粗糙结构的构筑做准备。2.多尺度粗糙结构的构筑:将抛光后的45#中碳钢安装在喷丸机内装夹台上,接通喷丸机电源,并接通空气压缩机,进行微粒喷丸处理。第一本文档来自技高网...
【技术保护点】
一种中碳钢表面微纳米多尺度结构的制备方法,其特征在于,包括如下具体步骤:S1.先用120~1000目砂纸打磨中碳钢表面,再用抛光剂上对中碳钢表面进行抛光处理5~10min,预处理中碳钢表面,得到抛光面;S2.采用微粒喷丸工艺,将步骤S1处理过的中碳钢安装在喷丸机内装夹台上,设置喷枪喷嘴与待喷丸的抛光面距离为5~15cm,喷丸压力为0.1~0.4MPa,接通喷丸机电源,并接通空气压缩机,用微粒喷丸对中碳钢进行处理,原位构筑表面粗糙结构,清洗后冷风吹干;S3.将步骤S2处理过的中碳钢浸泡在低表面能试剂中进行化学修饰,经清洗并吹干,得到具备超疏水特性的中碳钢表面。
【技术特征摘要】
1.一种中碳钢表面微纳米多尺度结构的制备方法,其特征在于,包括如下具体步骤:S1.先用120~1000目砂纸打磨中碳钢表面,再用抛光剂上对中碳钢表面进行抛光处理5~10min,预处理中碳钢表面,得到抛光面;S2.采用微粒喷丸工艺,将步骤S1处理过的中碳钢安装在喷丸机内装夹台上,设置喷枪喷嘴与待喷丸的抛光面距离为5~15cm,喷丸压力为0.1~0.4MPa,接通喷丸机电源,并接通空气压缩机,用微粒喷丸对中碳钢进行处理,原位构筑表面粗糙结构,清洗后冷风吹干;S3.将步骤S2处理过的中碳钢浸泡在低表面能试剂中进行化学修饰,经清洗并吹干,得到具备超疏水特性的中碳钢表面。2.根据权利要求1所述的中碳钢表面微纳米多尺度结构的制备方法,其特征在于,步骤S1中所述的抛光剂为金刚石悬浮液或金刚石抛光膏。3.根据权利要求1所述的中碳钢表面微纳米多尺度结构的制备方法,其特征在于,步骤S2中所述的微粒弹丸为雾化不锈钢球形弹丸,弹...
【专利技术属性】
技术研发人员:罗松,揭晓华,麦永津,张留艳,郑琼彬,张艳梅,
申请(专利权)人:广东工业大学,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。