【技术实现步骤摘要】
本专利技术涉及雷达点云数据处理
,特别涉及一种基于多线激光雷达3D点云数据的分割方法。
技术介绍
近年来,由于Velodyne等3D激光传感器可以获得精确的深度信息并且不受光照、天气变化等复杂环境因素的影响,在无人驾驶车的环境感知、三维重建等领域得到了广泛的应用。利用Velodyne等多线激光传感器对周围场景进行扫描得到的3D点云数据中,包含了传感器周围环境中几乎所有物体的反射数据。通过对扫描得到的点云数据进行相应的处理,就可以达到对扫描场景中障碍物检测和识别的目的。由于传感器自身的原因偶尔会遇到少数雷达错误反射点,而这些错误点往往是单点孤立存在的;还有一些是悬空小障碍物如悬挂的树枝,小飞虫等等,也会引入一些障碍误检。在无人驾驶车路径规划中,若是碰到这些异常点就会使自主车紧急刹车,致使无人驾驶车辆无法通行的假象,因此需要采用一种有效的方法对采集的点云进行预处理以消除这些异常点,提高检查准确率。在城市场景中最常见的障碍物有车辆、行人、交通信号灯、建筑物等等,这些障碍物都是建立在地面之上,所以在在对这些目标进行分割之前首先必须将地面提取出来,否则地面点的存在会使所有地面上的物体相互连接在一起,无法完成分割。现有的地面分割方法主要有基于障碍栅格的检测的方法、基于极坐标网格线性拟合、面拟合的方法、基于扫描线梯度的方法。基于障碍栅格的检测方法优点在于将三维信息降低到二维信息,大大降低了传感器数据分析的复杂度和计算量,有较好的稳定性和实时性,但是由于障碍栅格判定和滤波严格,减少了误检点,但是由于雷达点云分布不均匀,特别是在远处,雷达三维点云稀疏,容易导致远处的 ...
【技术保护点】
一种基于多线激光雷达的3D点云分割方法,其特征在于,包括以下步骤:步骤1,利用多线激光雷达扫描360°范围内的3D点云数据,建立笛卡尔坐标系OXYZ,将3D点云数据转换到笛卡尔坐标系下,对笛卡尔坐标系下的3D点云数据进行预处理,确定3D点云数据中的感兴趣区域;步骤2,利用近邻点的统计特性滤除所述感兴趣区域中的悬空障碍点;步骤3,构建极坐标网格地图,将所述的滤除悬空障碍点后的3D点云数据映射到极坐标网格地图中,然后从极坐标网格地图中的3D点云数据中分割出非地面点云数据;步骤4,将步骤3得到的非地面点云数据利用八叉树进行体素化,采用基于八叉树体素网格的区域生长方法进行聚类分割。
【技术特征摘要】
1.一种基于多线激光雷达的3D点云分割方法,其特征在于,包括以下步骤:步骤1,利用多线激光雷达扫描360°范围内的3D点云数据,建立笛卡尔坐标系OXYZ,将3D点云数据转换到笛卡尔坐标系下,对笛卡尔坐标系下的3D点云数据进行预处理,确定3D点云数据中的感兴趣区域;步骤2,利用近邻点的统计特性滤除所述感兴趣区域中的悬空障碍点;步骤3,构建极坐标网格地图,将所述的滤除悬空障碍点后的3D点云数据映射到极坐标网格地图中,然后从极坐标网格地图中的3D点云数据中分割出非地面点云数据;步骤4,将步骤3得到的非地面点云数据利用八叉树进行体素化,采用基于八叉树体素网格的区域生长方法进行聚类分割。2.如权利要求1所述的基于多线激光雷达的3D点云分割方法,其特征在于,所述步骤1中,构建所述笛卡尔坐标系OXYZ的具体过程包括:在多线激光雷达位于水平面上处于静止状态时,以所述激光雷达为中心点,以激光雷达的垂直轴线方向为Z轴,以扫描起始平面的水平射线方向为X轴,Y轴是由Z轴和X轴根据右手螺旋定则确定。3.如权利要求2所述的基于多线激光雷达的3D点云分割方法,其特征在于,所述步骤1中,对所述笛卡尔坐标系下的3D点云数据进行预处理是指保留范围在-20m<X<20m,-50m<Y<50m,-3m<Z<3m范围内的3D点云数据。4.如权利要求1所述的基于多线激光雷达的3D点云分割方法,其特征在于,所述步骤2中,利用近邻点的统计特性滤除所述感兴趣区域中的悬空障碍点的过程包括:(2-1)将步骤1得到的感兴趣区域中的3D点云数据以Octree的数据结构进行存储;(2-2)将3D点云数据分割为三维阵列,将3D点云数据中的每一点依次作为当前点,在半径为L的360°范围内找到该当前点在8邻域内所有的3D点云数据记为近邻点;(2-3)设置阈值Threshold,比较所述的近邻点数与阈值Threshold,若近邻点数小于阈值Threshold,则该近邻点对应的当前点为标记为悬空点,并滤除该悬空点。5.如权利要求1所述的基于多线激光雷达的3D点云分割方法,其特征在于,所述步骤3中,构建所述极坐标网格地图的方法为:以笛卡尔坐标系OXYZ的原点为中心点,以Z轴为中心对称轴,建立半径为R的极坐标网格地图,将网格地图划分为M个等圆周的扇形,每个扇形的圆周角为:Δα=360°/M。6.如权利要求5所述的所述的基于多线激光雷达的3D点云分割方法,其特征在于,所述步骤3中,在极坐标网格地图下,从步骤2中得到的滤除悬空障碍点的3D点云数据中分割出非地面点云数据的具体方法过程包括:(3-1)在所述极坐标网格地图中每个划分的扇形中,将距离极坐标网格地图中心点5至R米范围内的区域划分为N个栅格,栅格的分辨率为Δd=(R-5)/N;(3-2)计算落入每个栅格内的3D点云数据的最大高度差和平均高度;(3-3)设置阈值thresh1和thresh2,依次将所有栅格分别作为当前栅格,判断当前栅格内3D点云数据的最大高度差、平均高度与阈值thresh1、thresh2的大小关系,若最大高度差小于thresh1且平均高度也小于thresh2,则当前栅格标记为地面栅格,否则标记为非地面栅格;(3-4)在以极坐标网格地图中心点为原点半径为20米的圆形区域内,设置阈值thresh3,依次从步骤(3-3)中标记为非地面栅格中选取一个作为当前非地面栅格,若当前非地面栅格3*3邻域内的栅格全部为被标记为地面栅格,且该当前非地面栅格内的3D点云数据个数小于thresh3,则将当前非地面栅格标记为地面栅格;(3-5)将所有标记为地面栅格内的3D点云数据滤除,剩下3D点云...
【专利技术属性】
技术研发人员:赵祥模,徐志刚,孙朋朋,闵海根,李骁驰,王润民,吴霞,
申请(专利权)人:长安大学,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。