一种基于光电容积脉搏波信号的运动噪声检测方法技术

技术编号:14060210 阅读:161 留言:0更新日期:2016-11-27 15:39
本发明专利技术公开了一种基于光电容积脉搏波信号的运动噪声检测方法,为心率测量的后续工作奠定基础。该方法中,由反射式光电传感器和运动传感器采集同时间段内的多个光电容积脉搏波信号及加速度信号;采用主成分分析法对加速度信号进行处理,产生运动噪声相关的参考信号,并结合最小均方自适应滤波器消除部分运动噪声;然后将处理后多个光电容积脉搏波信号和加速度信号构成频谱矩阵,提取频谱矩阵行稀疏的结构特征构建稀疏信号重构模型;最后通过正则化算法优化稀疏信号重构模型,获得多个光电容积脉搏波信号频谱中运动噪声的谱峰位置。本发明专利技术能精确地检测出光电容积脉搏波信号中的运动噪声,实现心率的高精度测量。

【技术实现步骤摘要】

本专利技术涉及生理信号处理领域,尤其涉及一种基于光电容积脉搏波信号的运动噪声检测方法
技术介绍
心率测量作为人体运动生理负荷的客观评定指标,已被广泛应用于健身运动、竞技体育训练的各个方面。传统的心率测量技术虽能达到较高的测量精度,但是测量条件限制较多。为了满足未来电子健康监测要求,基于光电容积脉搏波信号的心率测量方法引起了学术界和工业界的高度关注。然而,光电容积脉搏波是一种信号强度弱、易受噪声干扰的生物信号。在运动状态下,由于组织干扰、静脉血容量以及光程变化,极易产生与心率频率十分接近的运动噪声,进而使得心率测量精度下降。近年来,研究人员已对光电容积脉搏波信号中运动噪声的检测工作进行了相关研究。例如,专利技术专利“一种适用于心率信号的运动噪声检测方法”(申请号:2015108739783,申请公布号:CN105286846A)中提出了联合稀疏谱重构模型,该模型中对整个频谱矩阵进行了行稀疏和全局稀疏的限制,并通过不精确增广拉格朗日乘子法求解该模型的最优解,进而检测出运动噪声的位置。而本专利技术采用快速去噪算法和信号重构算法相结合的技术进行光电容积脉搏波信号中的运动噪声的检测。即首先利用主成分分析法和最小均方自适应滤波器的结合消除光电容积脉搏波中的部分运动噪声;其次提取频谱矩阵行稀疏的结构特征构建稀疏信号重构模型,并通过正则化M-FOCUSS算法优化重构模型。本专利技术大大地提高了运动噪声的检测精确度,降低了计算复杂度。
技术实现思路
本专利技术所要解决的技术问题是如何有效检测出光电容积脉搏波信号中强烈运动噪声的谱峰位置,从而实现心率的高精度测量。为了解决上述技术问题,本专利技术提供了一种基于光电容积脉搏波信号的运动噪声检测方法,其特征在于:所述主成分分析法对所述加速度信号进行处理,并结合所述自适应滤波器消除所述多个光电容积脉搏波信号中的部分运动噪声;然后,将处理后的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵的结构特征构建所述稀疏信号重构模型,并优化所述稀疏信号重构模型;该方法包括如下步骤:所述主成分分析法对预处理后的所述加速度信号进行分析,产生运动噪声相关的参考信号,并结合最小均方自适应滤波器对所述光电容积脉搏波信号中的部分运动噪声进行消除;同时,将去除部分运动噪声的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵行稀疏的结构特征建立所述稀疏信号重构模型,并通过正则化M-FOCUSS算法优化所述重构模型,获得多个光电容积脉搏波信号频谱中运动噪声的谱峰位置;优选地,所述加速度信号与所述光电容积脉搏波信号中的运动噪声具有强相关性,即所述加速度信号能够在三轴方向上描述运动噪声的“足迹”;故所述主成分分析法对所述加速度信号进行处理,选取出包含“信息”最多的第一主成分,并作为运动噪声相关的参考信号;优选地,所述最小均方自适应滤波器选用上述运动噪声相关的参考信号,根据均方误差最小化的准则,不断更新滤波权重,消除所述光电容积脉搏波信号中的部分运动噪声;优选地,所述频谱矩阵由上述消除部分运动噪声的多个光电容积脉搏波信号和所述加速度信号构成;依据所述频谱矩阵行稀疏的结构特征构造所述稀疏信号重构模型,其目标函数如下: min X 1 2 | | Y - Φ X | | F 2 + λ | | X | | 1.2 ]]>s.t:Y=ΦX+V其中,用来约束频谱矩阵行稀疏,xi,j是频谱矩阵X第i行第j列元素,λ是用来权衡||X||1,2重要性的权值;约束条件中Y∈RM×H是一个观测矩阵,X∈CN×H是相应信号的频谱矩阵,即需要求解的稀疏频谱矩阵是一个冗余离散傅里叶变换基,V是模型误差或者测量误差矩阵。与现有技术相比,本专利技术提供的技术方案采用快速去噪算法和信号重构算法相结合的技术准确检测光电容积脉搏波信号中的运动噪声,大大地提高了运动噪声的检测精度,并降低了计算复杂度。附图说明图1为本专利技术实施例的基于光电容积脉搏波信号的运动噪声检测方法的流程示意图。具体实施方式以下结合附图及实施例来详细说明本专利技术的实施方式,借此对本专利技术如何应用技术手段来解决技术问题,并达到相应技术效果的实现过程能充分理解并据以实施。本专利技术的技术方案包括两部分,第一利用主成分分析法对加速度信号进行分析,产生自适应滤波需要的运动噪声相关的参考信号,进而利用最小均方自适应滤波器消除光电容积脉搏波中的部分运动噪声;第二依据加速度信号和运动噪声信号的强相关性在频域表现为光电容积脉搏波信号频谱中运动噪声的谱峰位置和加速度信号频谱的谱峰位置相对齐的特征构建稀疏信号重构模型。此技术方案能精确地检测出光电容积脉搏波信号中的运动噪声,为后续去除运动噪声工作奠定基础。实施例一、基于光电容积脉搏波信号的运动噪声检测方法图1为本实施例的基于光电容积脉搏波信号的运动噪声检测方法的流程示意图。图1所示的本实施例,是基于光电容积脉搏波信号的运动噪声检测方法的整体流程,主要包括如下步骤:步骤S210,利用分布在不同位置的两个反射式光电传感器采集两个通道的光电容积脉搏波信号,再利用运动传感器采集同步的三个运动方向的加速度信号;步骤S220,预处理包括将上述原始信号进行下采样至采样频率为25Hz的操作以及通过通带为0.4Hz-4Hz的二阶巴特沃斯滤波器的滤波操作;步骤S230,利用主成分分析法对经预处理后的加速度信号进行分析,选取出包含“信息”最多的第一主成分,即运动噪声相关的参考信号X(n);步骤S240,最小均方自适应滤波器选用步骤S220产生的运动噪声相关的参考信号X(n),通过不断更新滤波权重W(n)对光电容积脉搏波信号中部分运动噪声进行消除;本步骤中,典型地,差值e(n)以及滤波权重W(n)更新的数学表达如下: e ( n ) = S ( n ) + M ( n ) - M , ( n ) 本文档来自技高网...
一种基于光电容积脉搏波信号的运动噪声检测方法

【技术保护点】
一种基于光电容积脉搏波信号的运动噪声检测方法,其特征在于:所述主成分分析法对所述加速度信号进行处理,并结合所述自适应滤波器消除所述多个光电容积脉搏波信号中的部分运动噪声;然后,将处理后的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵的结构特征构建所述稀疏信号重构模型,并优化所述稀疏信号重构模型;该方法包括如下步骤:所述主成分分析法对预处理后的所述加速度信号进行分析,产生运动噪声相关的参考信号,并结合最小均方自适应滤波器对所述光电容积脉搏波信号中的部分运动噪声进行消除;同时,将去除部分运动噪声的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵行稀疏的结构特征建立所述稀疏信号重构模型,并通过正则化M‑FOCUSS算法优化所述重构模型,获得多个光电容积脉搏波信号频谱中运动噪声的谱峰位置。

【技术特征摘要】
1.一种基于光电容积脉搏波信号的运动噪声检测方法,其特征在于:所述主成分分析法对所述加速度信号进行处理,并结合所述自适应滤波器消除所述多个光电容积脉搏波信号中的部分运动噪声;然后,将处理后的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵的结构特征构建所述稀疏信号重构模型,并优化所述稀疏信号重构模型;该方法包括如下步骤:所述主成分分析法对预处理后的所述加速度信号进行分析,产生运动噪声相关的参考信号,并结合最小均方自适应滤波器对所述光电容积脉搏波信号中的部分运动噪声进行消除;同时,将去除部分运动噪声的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵行稀疏的结构特征建立所述稀疏信号重构模型,并通过正则化M-FOCUSS算法优化所述重构模型,获得多个光电容积脉搏波信号频谱中运动噪声的谱峰位置。2.根据权利要求1所述的基于光电容积脉搏波信号的运动噪声检测方法,其特征在于:所述加速度信号与所述光电容积脉搏波信号中的运动噪声具有强相关性,即所述加速度信...

【专利技术属性】
技术研发人员:熊继平蔡丽桑王妃
申请(专利权)人:浙江师范大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1