【技术实现步骤摘要】
本专利技术涉及生理信号处理领域,尤其涉及一种基于光电容积脉搏波信号的运动噪声检测方法。
技术介绍
心率测量作为人体运动生理负荷的客观评定指标,已被广泛应用于健身运动、竞技体育训练的各个方面。传统的心率测量技术虽能达到较高的测量精度,但是测量条件限制较多。为了满足未来电子健康监测要求,基于光电容积脉搏波信号的心率测量方法引起了学术界和工业界的高度关注。然而,光电容积脉搏波是一种信号强度弱、易受噪声干扰的生物信号。在运动状态下,由于组织干扰、静脉血容量以及光程变化,极易产生与心率频率十分接近的运动噪声,进而使得心率测量精度下降。近年来,研究人员已对光电容积脉搏波信号中运动噪声的检测工作进行了相关研究。例如,专利技术专利“一种适用于心率信号的运动噪声检测方法”(申请号:2015108739783,申请公布号:CN105286846A)中提出了联合稀疏谱重构模型,该模型中对整个频谱矩阵进行了行稀疏和全局稀疏的限制,并通过不精确增广拉格朗日乘子法求解该模型的最优解,进而检测出运动噪声的位置。而本专利技术采用快速去噪算法和信号重构算法相结合的技术进行光电容积脉搏波信号中的运动噪声的检测。即首先利用主成分分析法和最小均方自适应滤波器的结合消除光电容积脉搏波中的部分运动噪声;其次提取频谱矩阵行稀疏的结构特征构建稀疏信号重构模型,并通过正则化M-FOCUSS算法优化重构模型。本专利技术大大地提高了运动噪声的检测精确度,降低了计算复杂度。
技术实现思路
本专利技术所要解决的技术问题是如何有效检测出光电容积脉搏波信号中强烈运动噪声的谱峰位置,从而实现心率的高精度测量。为了解决上述 ...
【技术保护点】
一种基于光电容积脉搏波信号的运动噪声检测方法,其特征在于:所述主成分分析法对所述加速度信号进行处理,并结合所述自适应滤波器消除所述多个光电容积脉搏波信号中的部分运动噪声;然后,将处理后的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵的结构特征构建所述稀疏信号重构模型,并优化所述稀疏信号重构模型;该方法包括如下步骤:所述主成分分析法对预处理后的所述加速度信号进行分析,产生运动噪声相关的参考信号,并结合最小均方自适应滤波器对所述光电容积脉搏波信号中的部分运动噪声进行消除;同时,将去除部分运动噪声的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵行稀疏的结构特征建立所述稀疏信号重构模型,并通过正则化M‑FOCUSS算法优化所述重构模型,获得多个光电容积脉搏波信号频谱中运动噪声的谱峰位置。
【技术特征摘要】
1.一种基于光电容积脉搏波信号的运动噪声检测方法,其特征在于:所述主成分分析法对所述加速度信号进行处理,并结合所述自适应滤波器消除所述多个光电容积脉搏波信号中的部分运动噪声;然后,将处理后的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵的结构特征构建所述稀疏信号重构模型,并优化所述稀疏信号重构模型;该方法包括如下步骤:所述主成分分析法对预处理后的所述加速度信号进行分析,产生运动噪声相关的参考信号,并结合最小均方自适应滤波器对所述光电容积脉搏波信号中的部分运动噪声进行消除;同时,将去除部分运动噪声的多个光电容积脉搏波信号和所述加速度信号构成频谱矩阵,依据上述频谱矩阵行稀疏的结构特征建立所述稀疏信号重构模型,并通过正则化M-FOCUSS算法优化所述重构模型,获得多个光电容积脉搏波信号频谱中运动噪声的谱峰位置。2.根据权利要求1所述的基于光电容积脉搏波信号的运动噪声检测方法,其特征在于:所述加速度信号与所述光电容积脉搏波信号中的运动噪声具有强相关性,即所述加速度信...
【专利技术属性】
技术研发人员:熊继平,蔡丽桑,王妃,
申请(专利权)人:浙江师范大学,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。