【技术实现步骤摘要】
本专利技术涉及结构健康检测损伤识别
,更具体地,涉及一种利用遗传优化算法——鸟群(BMO)算法和结构的模态参数对结构的损伤进行识别的方法,是一种基于BMO算法的结构损伤识别方法。
技术介绍
近年来,我国经济迅速发展,科学技术水平也在不断提高,在许多领域都取得了很不错的成绩。与此同时,由于科技的提高和经济的发展,国家在重大土木工程诸如大跨度桥梁、大坝、大垮空间结构、超高层建筑、海洋平台等方面投入了巨额的资金。这些大型建筑大多数都要服役几十年,有的甚至达到上百年,在这么长的服役时间内,这些建筑不免要受到环境侵蚀、突变效应、载荷效应和材料老化等因素的影响,在这些因素的耦合作用下,用于构建这些大型建筑的材料和结构会逐渐的出现损伤,它们的抗力也会不断地衰减。当结构的关键部位损伤达到一定程度的时候,这些建筑就会出现无法挽回的损伤,给国家财产带来重大损失,给人身安全带来重大威胁,为了有效的预防类似情况的发生,结构损伤识别技术应运而生。结构的损伤可以发生在很多的方面,判断一个结构是否损伤也有不同的衡量参数和标准,这就导致了结构损伤识别方法的多种多样,但是大体上是两个方面:一个是基于振动的损伤识别检测方案,另一个是基于动力特性的损伤检测方案。文献“基于时域响应灵敏度分析的板结构损伤识别(振动与冲击,2015,34(4),117~120)”提出了一种模型修正方法和灵敏度方法相结合的损伤识别新方法。该方法首先利用New-mark法获得损伤结构的时域响应,在损伤识别反问题当中,利用灵敏度分析,不断进行迭代,最终得到最后的识别结果。然而应用到时域数据时,要求测量一定时间内的 ...
【技术保护点】
一种基于BMO算法的结构损伤识别方法,其特征在于,包括以下步骤:1)用有限元方法将结构进行简化建模,并把结构划分为nel个单元;2)提取损伤结构的NF阶频率和模态,构建目标函数f如下所示:f=Σj=1NFwωj2Δωj2+Σj=1NMwφj2(1-MACjR)]]>Δωj=|ωjC-ωjMωjM|]]>MACjR=({φjC}T{φjM})2|{φjC}|2|{φjM}|2]]>其中为结构第j阶计算得到的频率和振型,为结构第j阶测量得到的频率和振型,为权重系数;Δwj表示结构固有频率差值,代表第j阶不完整振型对应的简化模态置信准则,NF和NM分别为选用的固有频率和振型的个数;3)利用BMO算法不断优化目标函数,直到满足设定的终止条件,得到识别结果,其具体过程为:初始化参数,包括算法的初始种群数量、最大迭代次数、算法中的鸟群不同繁殖方式所占的比例以及五种不同鸟类繁殖方式的算法;在初始化后计算种群的函数适应度值,并评价种群;选出适应 ...
【技术特征摘要】
1.一种基于BMO算法的结构损伤识别方法,其特征在于,包括以下步骤:1)用有限元方法将结构进行简化建模,并把结构划分为nel个单元;2)提取损伤结构的NF阶频率和模态,构建目标函数f如下所示: f = Σ j = 1 N F w ω j 2 Δω j 2 + Σ j = 1 N M w φ j 2 ( 1 ...
【专利技术属性】
技术研发人员:吕中荣,秦昌富,朱嘉健,
申请(专利权)人:中山大学,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。