基于小波变换与孙子定理相结合的图像压缩方法技术

技术编号:14012629 阅读:206 留言:0更新日期:2016-11-17 14:03
一种基于小波变换与孙子定理相结合的图像压缩方法,包括如下过程:首先,对原始图像二维小波变换后,转换成小波域上的小波系数,接下来对小波域上的小波系数进行量化编码,仅保留较大的小波系数,其余置零;对小波变换后的数据进行零游程编码,零游程编码后的数据组存在正负,需要加一个常数值使得数据组都为不小于零的数,常数值取数据组中最小值的绝对值;再判断得到的新数据组的最大位宽,通过位宽选择进行孙子定理编码的分组数目NC,进行孙子定理压缩;而后,利用经典熵编码对数据进行统计编码,统计编码后的输出便是对原图像的压缩数据。本发明专利技术在保证解压图像达到一定的信噪比,满足解压缩后的图像品质需求,同时又能增加压缩比例。

【技术实现步骤摘要】

本专利技术涉及一种图像压缩方法,能对静态图像进行快速有效的压缩的压缩方法。
技术介绍
随着网络技术的迅速发展与普及,视频信息在人们生活领域中占有相当重要的比重,若对图像信息通过网络传输则需要更大的信息量。因此在信息时代让计算机及多媒体网络为我们提供更便捷的服务,必须对图像进行有效地处理。其解决方法需在保证数字图像质量的前提下,尽量降低数字图像的数据量,使其在存储和传输过程中的数据量尽可能地小,即必须对数字图像进行有效压缩处理。即使用图像压缩算法尽可能减小图像文件的存储空间。现有的图像压缩算法分为无损压缩与有损压缩。小波变换是80年代后期才开始兴起的,由于它具有很好的时域-频域局部化特性,随机被广泛地应用于信号处理领域,并被成功地引入图像的压缩算法之中,取得了很好的压缩效果,引起了从事图像压缩研究的科研人员的广泛重视。特别是Shaprio等人提出的嵌入式零树小波算法(EZW),是目前公认的图像变换压缩编码的最好的方法之一。小波变数是一种变分辨率的分析方法,它对高频信号采用小时窗,对低频信号采用大时窗进行分析,这正好与自然界中高频信号一般持续时间短,而低频信号持续时间较长的视频分布特性相吻合,非常适合于图像处理,基于小波变换图像压缩方法比基于DCT的JPEG等压缩方法有更好的执行效果,特别是在高压缩比的情况下。在某些情况下,为了保证图像的信噪比,减少失真度,这样图像压缩比例不能过高,也就增加了存储空间和传输的频带带宽。这就需要在不损失图像质量的前提下,进一步提高图像的压缩率。
技术实现思路
为了克服已有图像压缩方法的无法兼顾信噪比和压缩比例的不足,本专利技术提供一种兼顾信噪比和压缩比例的基于小波变换与孙子定理相结合的图像压缩方法,在保证解压图像达到一定的信噪比,满足解压缩后的图像品质需求,同时又能增加压缩比例。本专利技术解决其技术问题所采用的技术方案是:一种基于小波变换与孙子定理相结合的图像压缩方法,所述图像压缩方法包括如下过程:首先,对原始图像二维小波变换后,转换成小波域上的小波系数,接下来对小波域上的小波系数进行量化编码,仅保留较大的小波系数,其余置零;对小波变换后的数据进行零游程编码,零游程编码后的数据组存在正负,需要加一个常数值使得数据组都为不小于零的数,常数值取数据组中最小值的绝对值;再判断得到的新数据组的最大位宽,通过位宽选择进行孙子定理编码的分组数目NC,进行孙子定理压缩;而后,利用经典熵编码对数据进行统计编码,统计编码后的输出便是对原图像的压缩数据。本专利技术的技术构思为:采用小波变换、零游程编码与孙子定理压缩编码。由于孙子定理压缩编码具有无损压缩的特性,因此把该编码方法与小波变换等图像压缩编码方法进行结合,起到了进一步提高压缩倍数的作用,且整个方案实现简单,在传送压缩图像双方已知码表的情况下,压缩效果十分显著。所述孙子定理又称为中国余数定理。孙子定理编码能把多个较小的整数通过一定的变换,用一个较大的整数,起到一定的压缩作用。孙子定理压缩算法,则是孙子定理与熵编码相结合的算法。利用熵编码使得孙子定理压缩后的大整数可以以较小的数来表示,达到压缩效果。整个压缩过程不丢失信息量,属于无损数据压缩。本专利技术涉及到的算法利用孙子定理这一优势与小波变换图像压缩算法相结合,进一步提高小波变换图像压缩效率。小波变换-孙子定理压缩方法(WT-CRT),利用小波变换的编码优势与孙子定理的无损编码优势,对图像进行高效的压缩,其中离散小波变换与JPEG2000图像压缩标准相同。本专利技术的方法过程如图1所示,算法首先对输入的图像进行离散小波变换,然后经过零游程编码,再经过孙子定理编码,最后利用哈夫曼编码或者算术编码等熵编码对数据进行统计编码。统计编码后的输出便是对原图像的压缩数据。解压缩时,首先通过已知的码表进行熵解码,然后需要孙子定理解码和零游程解码,最后通过小波逆变换得到原始图像。本专利技术的有益效果主要表现在:在保证图像信噪比与小波变换压缩算法相同的情况下,进一步提高了小波变换压缩算法的压缩效果,节省存储空间,还起到一定的加密效果。附图说明图1为本专利技术的图像压缩方法的流程图。图2为进行小波变换-孙子定理压缩前的原始图像“lena”图。图3为进行小波变换-孙子定理压缩前的原始图像“tire”图。图4为对“lena”图以哈夫曼编码作为熵编码进行小波变换-孙子定理压缩并解压缩的图像。图5为对“lena”图以算术编码作为熵编码进行小波变换-孙子定理压缩并解压缩的图像。图6为对比“lena”图采用哈夫曼编码与算术编码作为熵编码的小波变换孙子定理编码得到的压缩倍数。横轴为K值,纵轴为压缩比。图7为对比“tire”图采用哈夫曼编码与算术编码作为熵编码的小波变换孙子定理编码得到的压缩倍数。横轴为K值,纵轴为压缩比。图8为“lena”图解压缩时改变第一个密钥后得到的解压缩图像。图9为“lena”图解压缩时改变所有密钥后得到的解压缩图像。图10是本专利技术的解压缩流程图。具体实施方式下面结合附图对本专利技术作进一步描述。参照图1~图10,一种基于小波变换与孙子定理相结合的图像压缩方法,首先对原始图像二维小波变换后,转换成小波域上的小波系数,接下来对小波域上的小波系数进行量化编码,仅保留较大的小波系数,其余置零。小波处理和JPEG2000标准相同,不再赘述。对小波变换后的数据进行零游程编码,零游程编码后的数据组存在正负,需要加一个常数值使得数据组都为不小于零的数,常数值取数据组中最小值的绝对值。再判断得到的新数据组的最大位宽,通过位宽选择进行孙子定理编码的分组数目NC,其具体定义如公式(2)所示。通过公式(3)~(10)的过程进行孙子定理压缩,而后利用经典熵编码(哈夫曼编码或者算术编码)对数据进行统计编码。由于算术编码存在专利问题,实际应用中建议采用哈夫曼编码进行计算。统计编码后的输出便是对原图像的压缩数据。解压缩时,首先通过已知的码表进行熵解码,然后需要孙子定理解码(公式(11))和零游程解码,最后通过小波逆变换得到原始图像。进一步,考虑孙子定理压缩长度K的时候,需要综合考虑复杂度和压缩率。当压缩长度K越大时,复杂度越高,压缩率也越高。一般K取值范围为2~12。另外孙子定理压缩的密钥{m1,…,mK本文档来自技高网...
基于小波变换与孙子定理相结合的图像压缩方法

【技术保护点】
一种基于小波变换与孙子定理相结合的图像压缩方法,其特征在于:所述图像压缩方法包括如下过程:首先,对原始图像二维小波变换后,转换成小波域上的小波系数,接下来对小波域上的小波系数进行量化编码,仅保留较大的小波系数,其余置零;对小波变换后的数据进行零游程编码,零游程编码后的数据组存在正负,需要加一个常数值使得数据组都为不小于零的数,常数值取数据组中最小值的绝对值;再判断得到的新数据组的最大位宽,通过位宽选择进行孙子定理编码的分组数目NC,进行孙子定理压缩;而后,利用经典熵编码对数据进行统计编码,统计编码后的输出便是对原图像的压缩数据。

【技术特征摘要】
1.一种基于小波变换与孙子定理相结合的图像压缩方法,其特征在于:所述图像压缩方法包括如下过程:首先,对原始图像二维小波变换后,转换成小波域上的小波系数,接下来对小波域上的小波系数进行量化编码,仅保留较大的小波系数,其余置零;对小波变换后的数据进行零游程编码,零游程编码后的数据组存在正负,需要加一个常数值使得数据组都为不小于零的数,常数值取数据组中最小值的绝对值;再判断得到的新数据组的最大位宽,通过位宽选择进行孙子定理编码的分组数目NC,进行孙子定理压缩;而后,利用经典熵编码对数据进行统计编码,统计编码后的输出便是对原图像的压缩数据。2.如权利要求1所述的基于小波变换与孙子定理相结合的图像压缩方法,其特征在于:所述孙子定理压缩的过程如下:经过小波变换与零游程编码后得到数据c,零游程编码后的值有正有负,在熵编码前需要经过以下公式:c'=c+|min(c)| (1)式中c表示零游程编码后的值,|min(c)|表示取c序列中最小值的绝对值,经过该公式处理之后,使得c序列只存在正值或零,即c';然后根据c'的大小来决定孙子定理编码的分组数目NC,其定义如下:max表示取出c'的最大值,表示向上取整。3.如权利要求2所述的基于小波变换与孙子定理相结合的图像压缩方法,其特征在于:所述孙子定理压缩的过程如下:首先对零游程编码后的数据进行分块,分成长度为1×K的数据块。K表示孙子定理编码分块大小,由于需要分成2路进...

【专利技术属性】
技术研发人员:华惊宇周凯闻建刚徐志江李枫
申请(专利权)人:浙江工业大学
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1