【技术实现步骤摘要】
(一)
本专利技术涉及一种利用样本特征学习分类的红外弱小目标检测方法,属于数字图像处理领域,主要涉及数学形态学和机器学习。在各类基于图像的应用系统中有广阔的应用前景。(二)
技术介绍
红外预警系统通过被动接受热辐射来检测可疑目标,其中弱小目标检测一直是一个关键环节,如果可以尽早发现目标,就可以提前采取应对措施,争取到更多的准备时间,对于制导系统而言,在目标距离成像系统较远的时候就可以进行捕获与追踪。由于红外场景大多比较复杂,存在着噪声和边缘等诸多干扰,因此极易造成虚警率过高。研究者提出了很多方法进行小目标检测。基于最大-中值滤波和最大-均值滤波的方法(参见文献:迪什潘德孟等.用于小目标检测的最大-中值和最大-均值滤波器,国际光学工程学会光学科学、工程和仪器国际研讨会论文集,1999:74-83.(Deshpande S D,Meng H E,Venkateswarlu R,et al.Max-mean and max-median filters for detection of small targets[C]//SPIE's International Symposium on Optical Science,Engineering,and Instrumentation.International Society for Optics and Photonics,1999:74-83.))通过当前的图像邻域进行选择和排序来代替中心像素得到背景预测图,但对于复杂噪声较为敏感造成虚警过高。基于核的方法(参见文献:列昂诺夫.用于移除杂波的非参数方法,美国电 ...
【技术保护点】
一种利用样本特征学习分类的红外弱小目标检测方法,其特征在于:该方法具体步骤如下:设含有目标的区域为正样本,背景区域为负样本,并且已经从实际红外图像中获得足够多带标签的正负样本:步骤一:从灰度分布、边缘、信息熵和纹理能量4个方面提取样本的7维特征向量,这7维特征分别计算如下:(Ⅰ)拟合残差首先把样本分为中心区域和周围区域,将灰度分布看作是由式(1)表示的二元二次函数曲面,像素坐标为(x,y),z(x,y)为当前坐标下的灰度值,然后利用周围像素进行加权最小二乘法拟合,待拟合参数如式(2)所示,损失函数由式(3)给出,解得拟合参数最优解如式(4)所示:z(x,y)=ax2+by2+cxy+dx+ey+f (1)θ=(a,b,c,d,e,f)T (2)L(θ)=(Xθ‑Y)TW(Xθ‑Y) (3)θ^=(XTWX)-1(XTWY)---(4)]]>其中式(3)权重矩阵如式(5)所示,由各像素到区域中点的距离决定,X如式(6)所示,为各像素坐标参数的n×6矩 ...
【技术特征摘要】
1.一种利用样本特征学习分类的红外弱小目标检测方法,其特征在于:该方法具体步骤如下:设含有目标的区域为正样本,背景区域为负样本,并且已经从实际红外图像中获得足够多带标签的正负样本:步骤一:从灰度分布、边缘、信息熵和纹理能量4个方面提取样本的7维特征向量,这7维特征分别计算如下:(Ⅰ)拟合残差首先把样本分为中心区域和周围区域,将灰度分布看作是由式(1)表示的二元二次函数曲面,像素坐标为(x,y),z(x,y)为当前坐标下的灰度值,然后利用周围像素进行加权最小二乘法拟合,待拟合参数如式(2)所示,损失函数由式(3)给出,解得拟合参数最优解如式(4)所示:z(x,y)=ax2+by2+cxy+dx+ey+f (1)θ=(a,b,c,d,e,f)T (2)L(θ)=(Xθ-Y)TW(Xθ-Y) (3) θ ^ = ( X T WX ) - 1 ( X T WY ) - - - ( 4 ) ]]>其中式(3)权重矩阵如式(5)所示,由各像素到区域中点的距离决定,X如式(6)所示,为各像素坐标参数的n×6矩阵,Y如式(7)所示,为各像素的灰度值,n表示参与拟合运算的像素数; X = x 1 2 y 1 2 x 1 y 1 x 1 y 1 1 x 2 2 y 2 2 x 2 y 2 x 2 y 2 1 . . . . . . . . . . . . . . . . . . x n 2 y n 2 x n y n x n ...
【专利技术属性】
技术研发人员:白相志,毕研广,
申请(专利权)人:北京航空航天大学,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。