当前位置: 首页 > 专利查询>吴本刚专利>正文

海洋网络安全风险防御系统技术方案

技术编号:13980965 阅读:72 留言:0更新日期:2016-11-12 11:22
本发明专利技术公开了海洋网络安全风险防御系统,包括海洋网络数据采集设备、海洋网络数据存储设备、风险实时分析服务器、显示设备和预警设备,其中所述海洋网络数据存储设备与海洋网络数据采集设备连接,用于将海洋网络数据采集设备采集的信息数据经过机密性筛选与整理后存储到海洋网络数据库中,海洋网络数据库对存储的信息数据进行实时更新与监测;所述风险实时分析服务器用于对海洋网络数据库实时更新的信息数据进行风险分析并输出反馈信息;所述预警设备根据反馈信息进行选择性防御和报警。本发明专利技术通过对信息数据进行分析得出用户潜在的风险操作,并进行选择性防御和报警,保证了系统的安全,又避免了系统资源的闲置。

【技术实现步骤摘要】

本专利技术涉及网络安全
,具体涉及海洋网络安全风险防御系统
技术介绍
海洋领域事关国计民生,尤其是部分涉海数据,成为国家的秘密级、甚至机密级保护数据。海洋网络,即各地海洋局内传输海洋业务数据的网络的安全性受到了各地海洋局相关部门的密切关注。因此,有必要设计一种海洋网络安全风险防御系统。大数据分析是指对规模巨大的数据进行分析。大数据分析基于数据可视化可以直观的展示数据,基于数据挖掘可让我们深入数据内部去挖掘价值,而基于数据预测性分析可以根据可视化分析和数据挖掘的结果做出一些预测性的判断。如何将大数据分析应用到海洋网络的安全防护,已是学术研究的热点。相关技术中,常使用k-means算法对数据进行聚类分析。k-means算法也称为k-均值算法或者k-平均算法,是一种使用广泛的迭代型划分聚类算法。其算法思想是将一个给定的数据集分为用户指定的k个聚簇(类),将每个类的平均值再作为聚类的中心从而来表示该类数据,再通过迭代求出每个聚簇(类)之内误差平方和最小化时的划分。该算法对于连续型属性可以取得较好的聚类效果,但对于离散型属性处理效果不理想。
技术实现思路
针对上述问题,本专利技术提供海洋网络安全风险防御系统。本专利技术的目的采用以下技术方案来实现:海洋网络安全风险防御系统,包括海洋网络数据采集设备、海洋网络数据存储设备、风险实时分析服务器、显示设备和预警设备;所述海洋网络数据采集设备,用于采集各种与海洋网络安全相关的信息数据;所述海洋网络数据存储设备,与海洋网络数据采集设备连接,用于将海洋网络数据采集设备采集的信息数据经过机密性筛选与整理后存储到海洋网络数据库中,海洋网络数据库对存储的信息数据进行实时更新与监测;所述风险实时分析服务器,与海洋网络数据库连接,用于对海洋网络数据库实时更新的信息数据进行风险分析并输出反馈信息;所述显示设备,与风险实时分析服务器连接,用于显示风险实时分析服务器输出的反馈信息,并形成日志文件;所述预警设备根据反馈信息进行选择性防御和报警。优选地,所述海洋网络数据采集设备包括视频采集模块、控制模块和通信模块,所述视频采集模块用于采集与信息数据相关的视频;所述控制模块,与视频采集模块连接,用于通过所述通信模块控制所述视频采集的视频信息的无线发送。其中,所述海洋网络数据库中预先存储有针对用户行为风险操作的安全策略。其中,所述风险实时分析服务器包括:(1)数据预处理模块,用于对海洋网络数据库实时更新的信息数据进行数据清理和清洗,过滤掉包含噪音和异常的数据,形成用户行为分析的有效数据集;(2)基于改进K-means聚类方法的数据分析模块,用于对所述有效数据集进行分类整理和分析,并对用户的行为进行分析,输出用户行为分析结果;(3)反馈模块,用于根据用户行为分析结果,识别用户行为风险操作,并从海洋网络数据库中提取相应的安全策略,再汇总风险操作和相应的安全策略打包成反馈信息。其中,所述基于改进K-means聚类方法的数据分析模块包括依次连接的数据准备单元、数据挖掘单元和用户行为分析单元;所述数据准备单元用于剔除有效数据集中的缺失值和异常值,并进一步进行归一化处理;所述数据挖掘单元用于采用改进K-means聚类方法对由数据准备单元处理过的有效数据集进行聚类,并建立用户分群模型;所述用户行为分析单元用于采用决策树算法对所述分群模型进行标识区分,识别用户身份,并根据标识区分识别结果建立人工神经网络模型,进而对用户行为进行预测并输出用户行为分析结果。其中,所述数据挖掘单元采用改进K-means聚类方法对由数据准备单元处理过的有效数据集进行聚类,具体为:1)设所述有效数据集具有n个样本,对n个样本进行向量化,通过夹角余弦函数计算所有样本两两之间的相似度,得到相似度矩阵XS;2)对相似度矩阵XS的每一行进行求和,计算出每一个样本与整个有效数据集的相似度,设XS=[sim(ai,aj)]n×n,i,j=1,…,n,其中sim(ai,aj)表示样本ai,aj间的相似度,求和公式为: XS p = Σ j = 1 n s i m ( a i , a j ) , p = 1 , ... , n ]]>3)按降序排列XSp,p=1,…,n,设XSp按从大到小排列的前4个值为XSmax,XSmax-1,XSmax-2,XSmax-3,若选择与最大值XSmax相对应的样本作为第一个初始的聚簇中心,否则选择与XSmax,XSmax-1,XSmax-2,XSmax-3对应的四个样本的均值作为第一个初始的簇中心,T为设定的比例值;4)将最大值为XSmax对应的矩阵中行向量的元素进行升序排列,假设前k-1个最小的元素为XSpq,q=1,…,k-1,选择前k-1个最小的元素XSpq相对应的样本作为剩余的k-1个初始的聚簇中心,其中所述k值的设定方法为:设定k值可能取值的区间,通过测试k的不同取值,并对区间内的各个值进行聚类,通过比较协方差,确定聚类之间的显著性差异,从而来探査聚类的类型信息,并最终确定合适的k值;5)计算剩余样本与各初始的聚簇中心之间的相似度,将剩余样本分发到相似度最高的聚簇中,形成变化后的k个聚簇;6)计算变化后的聚簇中各样本的均值,将其作为更新后的聚簇中心代替更新前的聚簇中心;7)若更新前的聚簇中心与更新后的聚簇中心相同,或者目标函数达到了最小值,停止更新,所述目标函数为: J = Σ l = 1 k Σ a x ∈ C l | | a x - a x l ‾ | | 2 ]]>其中,C4表示k个聚簇中的第l个聚簇,ax为第l个聚簇中的样本,为第l个聚簇的中心。其中,所述设定的比例值T的取值范围为[1.4,1.6]。本专利技术的有益效果为:1、设置风险实时分析服务器和预警设备,对与海洋网络安全相关的信息数据进行分析,得出用户潜在的风险操作,并针对风险实时分析服务器输出的反馈信息进行选择性防御和报警,保证了系统的安全,又避免了系统资源的闲置;2、设置基于改进K-means聚类方法的数据分析模块,采用改进K-means聚类方法对由数据准备单元处理过的有效数据集进本文档来自技高网...

【技术保护点】
海洋网络安全风险防御系统,其特征在于,包括海洋网络数据采集设备、海洋网络数据存储设备、风险实时分析服务器、显示设备和预警设备;所述海洋网络数据采集设备,用于采集各种与海洋网络安全相关的信息数据;所述海洋网络数据存储设备,与海洋网络数据采集设备连接,用于将海洋网络数据采集设备采集的信息数据经过机密性筛选与整理后存储到海洋网络数据库中,海洋网络数据库对存储的信息数据进行实时更新与监测;所述风险实时分析服务器,与海洋网络数据库连接,用于对海洋网络数据库实时更新的信息数据进行风险分析并输出反馈信息;所述显示设备,与风险实时分析服务器连接,用于显示风险实时分析服务器输出的反馈信息,并形成日志文件;所述预警设备根据反馈信息进行选择性防御和报警。

【技术特征摘要】
1.海洋网络安全风险防御系统,其特征在于,包括海洋网络数据采集设备、海洋网络数据存储设备、风险实时分析服务器、显示设备和预警设备;所述海洋网络数据采集设备,用于采集各种与海洋网络安全相关的信息数据;所述海洋网络数据存储设备,与海洋网络数据采集设备连接,用于将海洋网络数据采集设备采集的信息数据经过机密性筛选与整理后存储到海洋网络数据库中,海洋网络数据库对存储的信息数据进行实时更新与监测;所述风险实时分析服务器,与海洋网络数据库连接,用于对海洋网络数据库实时更新的信息数据进行风险分析并输出反馈信息;所述显示设备,与风险实时分析服务器连接,用于显示风险实时分析服务器输出的反馈信息,并形成日志文件;所述预警设备根据反馈信息进行选择性防御和报警。2.根据权利要求1所述的海洋网络安全风险防御系统,其特征在于,所述海洋网络数据采集设备包括视频采集模块、控制模块和通信模块,所述视频采集模块用于采集与信息数据相关的视频;所述控制模块,与视频采集模块连接,用于通过所述通信模块控制所述视频采集的视频信息的无线发送。3.根据权利要求1所述的海洋网络安全风险防御系统,其特征在于,所述海洋网络数据库中预先存储有针对用户行为风险操作的安全策略。4.根据权利要求1所述的海洋网络安全风险防御系统,其特征在于,所述风险实时分析服务器包括:(1)数据预处理模块,用于对海洋网络数据库实时更新的信息数据进行数据清理和清洗,过滤掉包含噪音和异常的数据,形成用户行为分析的有效数据集;(2)基于改进K-means聚类方法的数据分析模块,用于对所述有效数据集进行分类整理和分析,并对用户的行为进行分析,输出用户行为分析结果;(3)反馈模块,用于根据用户行为分析结果,识别用户行为风险操作,并从海洋网络数据库中提取相应的安全策略,再汇总风险操作和相应的安全策略打包成反馈信息。5.根据权利要求1所述的海洋网络安全风险防御系统,其特征在于,所述基于改进K-means聚类方法的数据分析模块包括依次连接的数据准备单元、数据挖掘单元和用户行为分析单元;所述数据准备单元用于剔除有效数据集中的缺失值和异常值,并进一步进行归一化处理;所述数据挖掘单元用于采用改进K-means聚类方法对由数据准备单元处理过的有效数据集进行聚类,并建立用户分群模型;所述用户行为分析单元用于采用决策树算法对所述分群模型进行标识区分,识别用户身份,并根据标识区分识别结果建立人工神经网络模型,进而对用户行为进行预测并输出用户行为分析结果。6.根据权利要求1所述的海洋网络安全风险防御系统,其特征在于,所述数据挖掘单元采用改进K-means聚类方法对由数据准备单元处理过的有效数据集进行聚类,具体为:1)设所述有效数据集具有n个样本,对n个样本进行向量化,通过夹角余弦函数计算所有样本两两之间的相似度,得到相似度矩阵XS;2)对相似度矩阵XS的每一行进行求和,计算出每一个样本与整个有效数据集的相似度,设XS=[sim(ai,aj)]n×n...

【专利技术属性】
技术研发人员:不公告发明人
申请(专利权)人:吴本刚
类型:发明
国别省市:浙江;33

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1