空调器远程控制运行故障判断方法技术

技术编号:13977443 阅读:120 留言:0更新日期:2016-11-11 18:44
本发明专利技术涉及一种空调器远程控制运行故障判断方法,特点是故障判断为:通过实验,空调器制冷剂标准充注量及标准充注量95%时,在不同室内温度、不同室外环境温度及室内机风机在高、低两档风量下,空调器制冷、制热运行时,获得第一及第二室内制冷剂温度、室内空气侧出风温度、第一及第二室外制冷剂温度以及室外空气侧出风温度的数据,每运行一段时间,控制系统自动将室内机风机的风量调到高风量状态;控制系统将获得的数据与内置实验数据库进行比较并初步判断,将可能出现的故障及时通过无线网络传输给维修人员,维修人员根据上传数据远程控制改变运行模式,获取新的运行数据,对制冷空调器制冷及制热运行进行二次判断。其优点为:更早的确定空调器故障,更好的满足用户使用要求和实现空调器运行节能等。

【技术实现步骤摘要】

本专利技术涉及一种空调器远程控制运行故障判断方法
技术介绍
我国居民和公共场所空调器的普及率已非常高,与此带来的空调器的故障也越来越多。虽然一般空调器都设有常规故障检测并通过故障代码显示告知使用者,但绝大多数使用者对故障代码所代表的故障原因不了解,故障原因不能及时排除,给用户使用带来诸多问题。针对上述问题,有些空调器生产企业开发了基于互联网技术的远程控制空调器,通过互联网技术,空调器故障能及时反馈给用户和维修人员,在维修人员的指导下,用户可以自行解决简单故障,提高了维修效率。但目前存在的问题是空调器厂家在空调器中内置的故障诊断系统判断的精确度不高;另外,由于空调器故障多是综合故障,判断的准确度不高。如以空调器制冷剂泄漏故障判断为例,一般以开机后几分钟室内机盘管温度能否达到规定值作为判断依据,考虑到空调器运行参数与空调器所处室内温度及室外环境温度等诸多因素有关,为减少误判,一般是以制冷剂泄漏20-30%呈现的现象作为故障判断标准,这样空调器制冷、制热性能已下降很多,空调器能耗会增加30%以上。
技术实现思路
本专利技术的目的是克服现有技术的不足而提供一种空调器远程控制运行故障判断方法,能对制冷剂泄漏、室外机换热器脏、室外机风机电容衰减、室内机过滤网脏及室内机风机电容衰减五种故障进行判断,用户和维修人员通过互联网技术随时了解空调器运行参数,维修人员可通过互联网技术对空调器进行远程控制,通过改变空调器运行状态,对故障进行二次判断,及早准确发现故障。为了达到上述目的,本专利技术是这样实现的,其是一种空调器远程控制运行故障判断方法,其特征在于空调器包括压缩机、室外机风机、室外换热器、节流装置、室内换热器、室内过滤器、室内机风机、控制系统、室内换热器入口温度传感器、室内换热器出口温度传感器、室内回风温度传感器也即房间温度传感器、室内出风温度传感器、室外机换热器入口温度传感器、室外机换热器出口温度传感器、室外进风温度传感器也即环境温度传感器、室外出风温度传感器及用于制冷与制热运行转换的四通阀;所述室内换热器入口温度传感器检测室内换热器入口的第一室内制冷剂温度T1,室内换热器出口温度传感器检测室内换热器出口的第二室内制冷剂温度T2,室内回风温度传感器也即房间温度传感器检测室内换热器的空气侧进风温度即室内温度T3,室内出风温度传感器检测室内换热器的室内空气侧出风温度T4,室外机换热器入口温度传感器检测室外换热器入口的第一室外制冷剂温度T5,室外机换热器出口温度传感器检测室外换热器出口的第二室外制冷剂温度T6,室外进风温度传感器也即环境温度传感器检测室外环境温度T7,室外出风温度传感器检测室外换热器的室外空气侧出风温度T8,控制系统运行故障判断如下:(一)通过实验,空调器制冷剂标准充注量时,在不同室内温度T3、不同室外环境温度T7以及室内机风机在高、低两档风量下,空调器制冷、制热运行时,获得第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6及室外空气侧出风温度T8的数据;(二)通过实验,空调器制冷剂充注量为标准充注量95%时,在不同室内温度T3、不同室外环境温度T7以及室内机风机在高、低两档风量下,空调器制冷、制热运行时,获得第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6及室外空气侧出风温度T8的数据;(三)远程控制空调器的控制系统具有常规空调器运行时故障检测报警功能,且空调器每累计运行一段时间,控制系统对空调器进行一次精确运行故障判断,精确运行故障判断开始时,控制系统自动将室内机风机的风量调到高风量状态;控制系统获取空调器中第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内温度T3、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6、室外环境温度T7及室外空气侧出风温度T8的温度数据,控制系统将获得的温度数据与空调器的内置实验数据进行比较并初步判断,并将可能出现的故障及时通过无线网络传输给维修人员,维修人员根据上传数据及可能出现的故障远程控制空调器改变运行模式,获取新的运行数据,进行二次判断,对制冷空调器制冷、制热运行分别进行判断;(四)控制系统在空调器制冷运行时五种典型运行故障判断步骤如下:(a)制冷剂泄漏1)控制系统检测到室内温度T3及室内机换热器的制冷剂进出口温差ΔT1即ΔT1=T1-T2,对应此时室内温度T3,将检测得到的温差ΔT1与室内温度T3、制冷剂充注量为标准充注量95%及室内机风机的风量位于高档位时所对应的室内机换热器的制冷剂进出口温差ΔT11进行比较,如ΔT1<ΔT11,控制系统初步判断制冷剂泄漏,否则表明制冷剂泄漏未达到故障标准,可不考虑维修;2)维修人员获取ΔT1、ΔT11以及ΔT1与ΔT11比较结果数据后,维修人员远程控制控制系统改变室内机风机的风量,将风量从高档切换到低档,获取低档风量时室内机换热器的制冷剂进出口温差ΔT1d的数据,再与房间温度T3、制冷剂充注量为标准充注量95%、室内机风机的风量位于低档时所对应的室内机换热器的制冷剂进出口温差ΔT12进行比较,如ΔT1d<ΔT12,则判断空调器制冷剂泄漏,否则表明制冷剂泄漏未达到故障标准,可不考虑维修;(b)室内机过滤网脏或风机电容衰减1)控制系统检测室内温度T3、室外环境温度T7及室内机空气进出口的实测温差ΔT2即ΔT2=T3-T4,将检测得到的实测温差ΔT2与控制系统中实验得到的在室内温度T3及室外环境温度T7下的室内机空气进出口的实验温差ΔT21进行比较,如高档风量温差比k1≥1.2,其中高档风量温差比k1=实测温差ΔT2/实验温差ΔT21,则初步判断室内机过滤网脏或风机电容衰减故障;2)维修人员获取ΔT2、ΔT21以及k1数据后,维修人员远程控制控制系统改变室内机风机的风量,将风量从高档切换到低档,获取低档风量时室内机空气进出口的实测温差ΔT2d,将检测得到的实测温差ΔT2d与控制系统中实验得到的在室内温度T3、室外环境温度T7下的室内机空气进出口的实验温差ΔT22进行比较,如0.9≤低档风量温差比k2/高档风量温差比k1≤1.1,其中低档风量温差比k2=实测温差ΔT2d/实验温差ΔT22,可判断为过滤网脏,如不在此范围,可判断为室内机风机7电容衰减;(c)室外机脏或室外风机电容衰减1)控制系统检测室内温度T3、室外环境温度T7、第一室外制冷剂温度T5及第二室外制冷剂温度T6,将检测得到的第一室外制冷剂温度T5及第二室外制冷剂温度T6与实验得到的在室内温度T3、室外环境温度T7下的第一室外制冷剂温度T5及第二室外制冷剂温度T6进行比较,如T5、T6的实际值均大于对应的实验值2℃以上,则初步判断室外机脏或室外风机电容衰减故障;2)控制系统继续检测室外环境温度T7及室外空气侧出风温度T8,得到实际进出风温差ΔT3即ΔT3=T8-T7,将检测得到温差ΔT3与控制系统中实验得到的在室内温度T3及室外环境温度T7下的室外机空气进出口温差ΔT31进行比较,如ΔT3-ΔT31≥2℃,可判断为室外机风机电容衰减故障,否则判断为室外机脏;(五)空调器制热运行时的五种典型运行本文档来自技高网...

【技术保护点】
一种空调器远程控制运行故障判断方法,其特征在于空调器包括压缩机(1)、室外机风机(2)、室外换热器(3)、节流装置(4)、室内换热器(5)、室内过滤器(6)、室内机风机(7)、控制系统(8)、室内换热器入口温度传感器(9)、室内换热器出口温度传感器(10)、室内回风温度传感器也即房间温度传感器(11)、室内出风温度传感器(12)、室外机换热器入口温度传感器(13)、室外机换热器出口温度传感器(14)、室外进风温度传感器也即环境温度传感器(15)、室外出风温度传感器(16)及用于制冷与制热运行转换的四通阀(17);所述室内换热器入口温度传感器(9)检测室内换热器(5)入口的第一室内制冷剂温度T1,室内换热器出口温度传感器(10)检测室内换热器(5)出口的第二室内制冷剂温度T2,室内回风温度传感器也即房间温度传感器(11)检测室内换热器(5)的空气侧进风温度即室内温度T3,室内出风温度传感器(12)检测室内换热器(5)的室内空气侧出风温度T4,室外机换热器入口温度传感器(13)检测室外换热器(3)入口的第一室外制冷剂温度T5,室外机换热器出口温度传感器(14)检测室外换热器(3)出口的第二室外制冷剂温度T6,室外进风温度传感器也即环境温度传感器(15)检测室外环境温度T7,室外出风温度传感器(16)检测室外换热器(3)的室外空气侧出风温度T8,控制系统(8)运行故障判断如下:(一)通过实验,空调器制冷剂标准充注量时,在不同室内温度T3、不同室外环境温度T7以及室内机风机(7)在高、低两档风量下,空调器制冷、制热运行时,获得第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6及室外空气侧出风温度T8的数据;(二)通过实验,空调器制冷剂充注量为标准充注量95%时,在不同室内温度T3、不同室外环境温度T7以及室内机风机(7)在高、低两档风量下,空调器制冷、制热运行时,获得第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6及室外空气侧出风温度T8的数据;(三)远程控制空调器的控制系统(8)具有常规空调器运行时故障检测报警功能,且空调器每累计运行一段时间,控制系统(8)对空调器进行一次精确运行故障判断,精确运行故障判断开始时,控制系统(8)自动将室内机风机(7)的风量调到高风量状态;控制系统(8)获取空调器中第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内温度T3、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6、室外环境温度T7及室外空气侧出风温度T8的温度数据,控制系统(8)将获得的温度数据与空调器的内置实验数据进行比较并初步判断,并将可能出现的故障及时通过无线网络传输给维修人员,维修人员根据上传数据及可能出现的故障远程控制空调器改变运行模式,获取新的运行数据,进行二次判断,对制冷空调器制冷及制热运行进行判断;(四)控制系统(8)在空调器制冷运行时五种典型运行故障判断步骤如下:(a)制冷剂泄漏控制系统(8)检测到室内温度T3及室内机换热器(5)的制冷剂进出口温差ΔT1即ΔT1=T1‑T2,对应此时室内温度T3,将检测得到的温差ΔT1与室内温度T3、制冷剂充注量为标准充注量95%及室内机风机(7)的风量位于高档位时所对应的室内机换热器(5)的制冷剂进出口温差ΔT11进行比较,如ΔT1<ΔT11,控制系统(8)初步判断制冷剂泄漏,否则表明制冷剂泄漏未达到故障标准,可不考虑维修;2)维修人员获取ΔT1、ΔT11以及ΔT1与ΔT11比较结果数据后,维修人员远程控制控制系统(8)改变室内机风机(7)的风量,将风量从高档切换到低档,获取低档风量时室内机换热器(5)的制冷剂进出口温差ΔT1d的数据,再与房间温度T3、制冷剂充注量为标准充注量95%、室内机风机(7)的风量位于低档时所对应的室内机换热器(5)的制冷剂进出口温差ΔT12进行比较,如ΔT1d<ΔT12,则判断空调器制冷剂泄漏,否则表明制冷剂泄漏未达到故障标准,可不考虑维修;(b)室内机过滤网脏或风机电容衰减1)控制系统(8)检测室内温度T3、室外环境温度T7及室内机空气进出口温差ΔT2即ΔT2=T3‑T4,将检测得到的实测温差ΔT2与控制系统(8)中实验得到的在室内温度T3及室外环境温度T7下的室内机空气进出口实验温差ΔT21进行比较,如高档风量温差比k1≥1.2,其中高档风量温差比k1=实测温差ΔT2/实验温差ΔT21,则初步判断室内机过滤网(6)脏或风机(7)电容衰减故障;2)维修人员获取ΔT2、ΔT21以及k1数据后,维修人员远程控制控制系统(8)改变室内机风机(7)的风量,将风量从高档切换到低档,获取低档风量时室内...

【技术特征摘要】
1.一种空调器远程控制运行故障判断方法,其特征在于空调器包括压缩机(1)、室外机风机(2)、室外换热器(3)、节流装置(4)、室内换热器(5)、室内过滤器(6)、室内机风机(7)、控制系统(8)、室内换热器入口温度传感器(9)、室内换热器出口温度传感器(10)、室内回风温度传感器也即房间温度传感器(11)、室内出风温度传感器(12)、室外机换热器入口温度传感器(13)、室外机换热器出口温度传感器(14)、室外进风温度传感器也即环境温度传感器(15)、室外出风温度传感器(16)及用于制冷与制热运行转换的四通阀(17);所述室内换热器入口温度传感器(9)检测室内换热器(5)入口的第一室内制冷剂温度T1,室内换热器出口温度传感器(10)检测室内换热器(5)出口的第二室内制冷剂温度T2,室内回风温度传感器也即房间温度传感器(11)检测室内换热器(5)的空气侧进风温度即室内温度T3,室内出风温度传感器(12)检测室内换热器(5)的室内空气侧出风温度T4,室外机换热器入口温度传感器(13)检测室外换热器(3)入口的第一室外制冷剂温度T5,室外机换热器出口温度传感器(14)检测室外换热器(3)出口的第二室外制冷剂温度T6,室外进风温度传感器也即环境温度传感器(15)检测室外环境温度T7,室外出风温度传感器(16)检测室外换热器(3)的室外空气侧出风温度T8,控制系统(8)运行故障判断如下:(一)通过实验,空调器制冷剂标准充注量时,在不同室内温度T3、不同室外环境温度T7以及室内机风机(7)在高、低两档风量下,空调器制冷、制热运行时,获得第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6及室外空气侧出风温度T8的数据;(二)通过实验,空调器制冷剂充注量为标准充注量95%时,在不同室内温度T3、不同室外环境温度T7以及室内机风机(7)在高、低两档风量下,空调器制冷、制热运行时,获得第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6及室外空气侧出风温度T8的数据;(三)远程控制空调器的控制系统(8)具有常规空调器运行时故障检测报警功能,且空调器每累计运行一段时间,控制系统(8)对空调器进行一次精确运行故障判断,精确运行故障判断开始时,控制系统(8)自动将室内机风机(7)的风量调到高风量状态;控制系统(8)获取空调器中第一室内制冷剂温度T1、第二室内制冷剂温度T2、室内温度T3、室内空气侧出风温度T4、第一室外制冷剂温度T5、第二室外制冷剂温度T6、室外环境温度T7及室外空气侧出风温度T8的温度数据,控制系统(8)将获得的温度数据与空调器的内置实验数据进行比较并初步判断,并将可能出现的故障及时通过无线网络传输给维修人员,维修人员根据上传数据及可能出现的故障远程控制空调器改变运行模式,获取新的运行数据,进行二次判断,对制冷空调器制冷及制热运行进行判断;(四)控制系统(8)在空调器制冷运行时五种典型运行故障判断步骤如下:(a)制冷剂泄漏控制系统(8)检测到室内温度T3及室内机换热器(5)的制冷剂进出口温差ΔT1即ΔT1=T1-T2,对应此时室内温度T3,将检测得到的温差ΔT1与室内温度T3、制冷剂充注量为标准充注量95%及室内机风机(7)的风量位于高档位时所对应的室内机换热器(5)的制冷剂进出口温差ΔT11进行比较,如ΔT1<ΔT11,控制系统(8)初步判断制冷剂泄漏,否则表明制冷剂泄漏未达到故障标准,可不考虑维修;2)维修人员获取ΔT1、ΔT11以及ΔT1与ΔT11比较结果数据后,维修人员远程控制控制系统(8)改变室内机风机(7)的风量,将风量从高档切换到低档,获取低档风量时室内机换热器(5)的制冷剂进出口温差ΔT1d的数据,再与房间温度T3、制冷剂充注量为标准充注量95%、室内机风机(7)的风量位于低档时所对应的室内机换热器(5)的制冷剂进出口温差ΔT12进行比较,如ΔT1d<ΔT12,则判断空调器制冷剂泄漏,否则表明制冷剂泄漏未达到故障标准,可不考虑维修;(b)室内机过滤网脏或风机电容衰减1)控制系统(8)检测室内温度T3、室外环境温度T7及室内机空气进出口温差ΔT2即ΔT2=T3-T4,将检测得到的实测温差ΔT2与控制系统(8)中实验得到的在室内温度T3及室外环境温度T7下的室内机空气进出口实验温差ΔT21进行比较,如高档风量温差比k1≥1.2,其中高档风量温差比k1=实测温差ΔT2/实验温差ΔT21,则初步判断室内机过滤网(6)脏或风机(7)电...

【专利技术属性】
技术研发人员:徐言生邹时智傅仁毅金波游茂生吴治将
申请(专利权)人:顺德职业技术学院
类型:发明
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1