本发明专利技术公开了一种氮掺杂介孔碳基吸附材料的制备方法,首先采用青蒿素类药物作为纳米银的还原剂和保护剂还原纳米银,然后将氮掺杂介孔碳浸渍在纳米银水溶液中超声烘干,并重复3‑5次浸渍‑超声‑烘干的过程最终得到氮掺杂介孔碳基吸附材料。本发明专利技术采用青蒿素类药物作为纳米银的还原剂和保护剂,具有工艺简单、原料来源广泛、反应温和、绿色环保等特点,并且制备得到的纳米银同时具有抗菌和抗疟的双重效果。重复3‑5次浸渍‑超声‑烘干的过程使得纳米银在氮掺杂介孔碳上分布均匀、附着稳定、不易脱落。本发明专利技术制备的氮掺杂介孔碳基吸附材料在污水治理和空气净化领域有着广阔的应用前景。
【技术实现步骤摘要】
本专利技术属于纳米材料领域,特别涉及一种氮掺杂介孔碳基吸附材料的制备方法。
技术介绍
随着我国经济、社会的快速发展,人口数量的不断增长,工业化和城镇化的加快推进,水体污染、空气污染事件频发,给环境和人们的健康带来了严重的损害。因此,污水治理和空气净化已经成为一项刻不容缓的任务。污染水体的治理技术有多种,其中吸附法因容易制备、成本低、吸附效果好而被大规模使用。常用的吸附材料有活性炭、壳聚糖等高分子吸附剂、微生物吸附剂、矿物类吸附剂等。活性炭的吸附性能易受吸附物分子的大小和极性影响,吸附速率随着温度的上升和污染物浓度的下降而降低;天然吸附材料具有价廉、无毒、易得等优点,但是其吸附不可控,再生困难,使用受刮风、降雨、降雪等自然条件的影响较大;高分子吸附材料的吸附性能易受其功能基团、极性和结构的影响(张帆,李菁,谭建华,王波,黄福. 吸附法处理重金属废水的研究进展[J]. 化工进展,2013,11:2749-2756;闫婧,代朝猛,周雪飞,张亚雷. 碳纳米管复合材料用于削减水环境中污染物的研究进展[J]. 材料导报,2015,01:127-131;聂海瑜,沈甘霓,杜凤沛,李向东. 碳纳米管对水体污染物吸附的研究进展[J]. 西南民族大学学报(自然科学版),2015,03:326-330)。人的一生大约有80%以上的时间是在室内度过的,因此室内空气质量的好坏直接影响到人们的身体健康(吴利瑞,张蓝心,于飞,陈君红,马杰. 氨基化碳纳米管/石墨烯气凝胶对甲醛吸附研究[J]. 中国环境科学,2015,11:3251-3256)。随着室外空气污染的日益严重,加上许多室内装修和装饰材料的污染以及大量化学用品进入家庭日常生活,使得室内空气同样不断恶化。而空调的广泛使用又使得室内生存空间越来越趋于封闭,导致室内空气的自我净化能力越来越差。人们呼吸了不新鲜的室内空气,有可能导致多种呼吸道疾病。随着人们健康意识的增强和生活水平的提高,越发认识到清洁空气对人体健康的重要性。因此,空气净化器正逐渐走入家庭和各种办公场所。在欧美发达国家,空气净化产品已经普遍用于家居、办公生活场所。调查数据显示,空气净化器在美国的普及率达到27%,日本17%,欧洲42%,韩国70%,而中国却不到1%。目前,国内外空气净化器普遍采用的净化技术主要有:紫外线净化、光触媒净化、等离子体净化、过滤净化、静电集尘、吸附净化、负离子净化、臭氧净化、分子络合等方法。在这些空气净化技术中,使用吸附原理净化空气是一项历史悠久的技术。活性炭是最常用的吸附剂,对室内多种有害气体都有一定的吸附作用,但它存在吸附量小、易饱和、易解吸等缺点,而且对室内主要污染物甲醛吸附效果有限,并且不能杀菌。纳米银具有优良的传热性、导电性、表面活性和催化性能,在光学、催化、微电子、生物传感、抗菌等领域具有巨大的应用价值。传统的纳米银的制备分为物理法和化学法。物理法对仪器设备要求较高,生产费用昂贵。化学法多采用水合肼、甲醛、多元醇、有机胺等做还原剂,虽然这些还原剂具有高活性,但对环境有害,并且制得的纳米银易发生团聚现象。近年来,采用绿色、环保、高效和廉价的方法制备纳米银逐渐成为研究的热点(柴春镜,白红娟. 生物法合成纳米银材料的研究进展[J]. 电镀与环保,2011,02:4-7)。目前已采用的绿色还原剂主要包括:维生素、柠檬酸钠、焦棓酸、对苯二酚、茶多酚、葡萄糖、果糖、蔗糖、植物及果皮提取物、微生物等。青蒿素是从植物黄花蒿叶中提取的有过氧基团的倍半萜内酯药物。以青蒿素类药物为主的联合疗法已经成为世界卫生组织推荐的抗疟疾标准疗法。世界卫生组织认为,青蒿素联合疗法是目前治疗疟疾最有效的手段,也是抵抗疟疾耐药性效果最好的药物,中国作为抗疟药物青蒿素的发现方及最大生产方,在全球抗击疟疾进程中发挥了重要作用。尤其在疟疾重灾区非洲,青蒿素已经拯救了上百万生命。根据世界卫生组织的统计数据,自2000年起,撒哈拉以南非洲地区约2.4亿人口受益于青蒿素联合疗法,约150万人因该疗法避免了疟疾导致的死亡。2015年10月,中国女药学家屠呦呦因创制新型抗疟药青蒿素和双氢青蒿素的贡献,与另外两位科学家共享2015年度诺贝尔生理学或医学奖。这是中国生物医学界迄今为止获得的世界级最高级大奖。青蒿素一个含过氧基团的倍半萜内酯化合物,分子式为C15H22O5,15个碳有7个是手性碳。分子量282.33,组分含量:C,63.81%,H,7.85%,O,28.33%,无色针状晶体,味苦。在丙酮、醋酸乙酯、氯仿、苯及冰醋酸中易溶,在乙醇和甲醇、乙醚及石油醚中可溶解,在水中几乎不溶。 熔点:156-157℃(蔡博莹. 青蒿素的研究进展[J]. 科学中国人,2015,35:55)。有序介孔碳是20世纪70年代发展起来的一种非金属碳材料,它具有均匀的孔径、高表面积和良好的孔道稳定性,与介孔硅相比,热力学稳定性较强,因此在吸附分离、催化剂、超级电容器电极材料等领域有重要的应用价值。但是有序介孔碳具有疏水性的孔表面,影响了它的吸附能力,使其受到一定的应用限制。因而对有序介孔碳进行功能化改性,能进一步提高它的吸附能力,扩大其应用范围(俞柱现. 自组装合成氮掺杂有序介孔碳材料与其CO2吸附[D].吉林大学,2014;刘云朋,周洁,李中坚,雷乐成. 氮掺杂有序介孔碳的研究进展[J]. 现代化工,2014,06:19-22+24;刘云朋. 氮掺杂有序介孔碳对石化废水中五氯酚的选择性吸附[D].浙江大学,2014.)。
技术实现思路
本专利技术针对现有技术存在的不足,旨在提供一种氮掺杂介孔碳基吸附材料的制备方法。本专利技术通过下述技术方案予以实现:(1)配置1-100g/L的硝酸银甲醇或者乙醇溶液,然后缓慢加入青蒿素类药物,搅拌均匀,然后置于紫外灯下光照5-60min,得到纳米银胶体溶液,用乙醇清洗、离心、干燥处理后得到纳米银,然后配置成0.01-100g/L的纳米银水溶液待用;(2)将氮掺杂介孔碳浸渍在所述0.01-100g/L纳米银水溶液中超声10min-100min后取出烘干,其中所述氮掺杂介孔碳与纳米银的质量比为100:1-10:1;(3)将步骤(2)重复3-5次得到氮掺杂介孔碳基吸附材料。作为一种优选方案,所述青蒿素类药物包括青蒿素及其衍生物。作为一种优选方案,所述青蒿素衍生物包括二氢青蒿素、蒿甲醚、青蒿琥酯等。作为一种优选方案,所述青蒿素类药物与硝酸银的质量比为10:1-1:1。作为一种优选方案,所述氮掺杂介孔碳的平均尺寸1μm,比表面积800-1000m2/g,含氮量4-5%。本专利技术具有如下有益效果:与现有技术相比,本专利技术的优点是:(1)采用青蒿素类药物作为纳米银的还原剂和保护剂,具有工艺简单、原料来源广泛、反应温和、绿色环保等特点,并且制备得到的纳米银同时具有抗菌和抗疟的双重效果;(2)重复3-5次浸渍-超声-烘干的过程使得纳米银在氮掺杂介孔碳上分布均匀、附着稳定、不易脱落;(3)由于纳米银、氮掺杂介孔碳的协同作用,本专利技术制备得到的氮掺杂介孔碳基吸附材料能够有效地去除PM2.5、甲醛、病毒、细菌、螨虫等在内的多种空气污染源和污水中的重金属离子、染料等多种污染源。在污水治理和空气净化领域有着广阔的应用前景。具体实施方式下面结合具本文档来自技高网...
【技术保护点】
一种氮掺杂介孔碳基吸附材料的制备方法,其特征在于:(1)配置1‑100g/L的硝酸银甲醇或者乙醇溶液,然后缓慢加入青蒿素类药物,搅拌均匀,然后置于紫外灯下光照5‑60min,得到纳米银胶体溶液,用乙醇清洗、离心、干燥处理后得到纳米银,然后配置成0.01‑100g/L的纳米银水溶液待用;(2)将氮掺杂介孔碳浸渍在所述0.01‑100g/L纳米银水溶液中超声10min‑100min后取出烘干,其中所述氮掺杂介孔碳与纳米银的质量比为100:1‑10:1;(3)将步骤(2)重复3‑5次得到氮掺杂介孔碳基吸附材料。
【技术特征摘要】
1.一种氮掺杂介孔碳基吸附材料的制备方法,其特征在于:(1)配置1-100g/L的硝酸银甲醇或者乙醇溶液,然后缓慢加入青蒿素类药物,搅拌均匀,然后置于紫外灯下光照5-60min,得到纳米银胶体溶液,用乙醇清洗、离心、干燥处理后得到纳米银,然后配置成0.01-100g/L的纳米银水溶液待用;(2)将氮掺杂介孔碳浸渍在所述0.01-100g/L纳米银水溶液中超声10min-100min后取出烘干,其中所述氮掺杂介孔碳与纳米银的质量比为100:1-10:1;(3)将步骤(2)重复3-5次得到氮掺杂介孔碳基吸附材料。2.根据权利要求1所述的一种氮掺杂介孔碳基吸附材料的制备方...
【专利技术属性】
技术研发人员:林泽兵,贺民强,周裕,
申请(专利权)人:苏州巨联环保科研有限公司,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。