基于人工智能Softmax回归方法建立分车型远程定损系统及方法技术方案

技术编号:13941663 阅读:82 留言:0更新日期:2016-10-29 17:23
基于人工智能Softmax回归方法建立分车型远程定损系统及方法,属于车辆定损领域,为了解决车辆碰撞后,对于碰撞后的碰撞车辆的车型检测的问题,具有车型检测子系统,判断车辆碰撞时所撞车型;车型检测子系统,判断车辆碰撞时所撞车型;所述车型检测子系统,对车型训练数据进行学习从而生成车型模型,所述车型模型建立使用Softmax回归方法。效果是:上述技术方案,可以实现对于车辆碰撞的车型检测,在远程定损的这个技术领域使用了机器学习的方法,针对的机器学习方法,在定损过程中,判别的准确率上得以提升。

【技术实现步骤摘要】

本专利技术属于车辆定损领域,涉及一种基于人工智能Softmax回归方法建立分车型远程定损系统及方法
技术介绍
针对车辆在低速运动(包括低速道路行驶、车辆停靠等)过程中频发碰撞事故而导致的理赔纠纷问题,远程定损技术通过采集车辆行驶过程中的多种信号(如速度、加速度、角速度、声音等)并用信号处理和机器学习技术加以分析,以判断碰撞是否发生以及碰撞后车辆的损毁情况。车辆发生碰撞事故后,前端设备能够检测出碰撞的发生并截取碰撞过程的信号,通过无线网络发送至云端,远程服务器从收到的信号中抽取出事先设计的特征值,用机器学习算法进行分析,先判断碰撞数据的准确性,再判断碰撞物体和工况情况,以确定碰撞数据集对什么零件产生了哪种等级的损伤,然后根据零件损伤等级计算出参考理赔金额并发送至保险公司。这期间会涉及对于车型、工况、目标、零件和区域的检测。
技术实现思路
为了解决车辆碰撞后,对于车型检测的问题,本专利技术提出了基于人工智能Softmax回归方法建立分车型远程定损系统,以实现对车型的检测。为了解决上述技术问题,本专利技术提供的技术方案的要点是:包括:车型选择子系统,选择车辆所对应的车型数据作为总数据集;数据分类子系统,读取CAE仿真数据和实车数据,并相应对数据进行分类;碰撞检测子系统,判断车辆在行车过程中是否发生碰撞;所述碰撞检测子系统对碰撞训练数据进行学习从而生成碰撞模型,所述碰撞模型建立使用Softmax回归方法;工况检测子系统,判断碰撞发生的所有工况信息;所述工况检测子系统对工况训练数据进行学习从而生成工况模型,所述工况模型建立使用Softmax回归方法;车型检测子系统,判断车辆碰撞时所撞车型;所述车型检测子系统,对车型训练数据进行学习从而生成车型模型,所述车型模型建立使用Softmax回归方法。有益效果:上述技术方案,可以实现对于车辆碰撞的车型检测,在远程定损的这个
使用了机器学习的方法,针对的机器学习方法,在定损过程中,判别的准确率上得以提升;本专利技术通过选择车型来导入该车型所对应的数据,而数据分类则是为了模型训练和测试的目的而加入的步骤;车型的检测是该方案实现的目的,是经过一系列操作所要得到的结果。附图说明图1为本专利技术所述的系统的结构示意框图。具体实施方式为了对本专利技术作出更为清楚的解释,下面对本专利技术涉及的技术术语作出定义:工况:碰撞角度、方向、目标、区域等全体碰撞信息;车型:汽车型号;目标:碰撞目标;区域:碰撞位置;零件:汽车零件;工况检测:检测本车碰撞角度、方向、目标、区域等全体碰撞信息;车型检测:检测与本车发生碰撞的汽车型号;目标检测:检测本车碰撞目标;区域检测:检测本车碰撞位置;零件检测:检测本车汽车零件。实施例1:一种基于人工智能Softmax回归方法建立分车型远程定损系统,包括:车型选择子系统,选择车辆所对应的车型数据作为总数据集;数据分类子系统,读取CAE仿真数据和实车数据,并相应对数据进行分类;碰撞检测子系统,判断车辆在行车过程中是否发生碰撞;所述碰撞检测子系统对碰撞训练数据进行学习从而生成碰撞模型,所述碰撞模型建立使用Softmax回归方法;工况检测子系统,判断碰撞发生的所有工况信息;所述工况检测子系统对工况训练数据进行学习从而生成工况模型,所述工况模型建立使用Softmax回归方法;车型检测子系统,判断车辆碰撞时所撞车型;所述车型检测子系统,对车型训练数据进行学习从而生成车型模型,所述车型模型建立使用Softmax回归方法。所述碰撞检测子系统包括,碰撞训练模块、碰撞测试模块、碰撞验证模块,所述碰撞训练模块用于对碰撞训练数据进行学习从而生成碰撞模型,碰撞测试模 块用于将碰撞测试数据带入碰撞模型中检测碰撞模型的结果,碰撞验证模块使用真实跑车数据验证碰撞模型的可靠性和准确率;所述工况检测子系统包括,工况训练模块、工况测试模块、工况验证模块,所述工况训练模块用于对工况训练数据进行学习从而生成工况模型,所述工况测试模块用于将工况测试数据带入模型中检测工况模型的结果,工况验证模块使用真实跑车数据验证工况模型的可靠性和准确率;所述车型检测子系统包括,车型训练模块、车型测试模块、车型验证模块,所述车型训练模块用于将车型训练数据进行学习从而生成车型模型,车型测试模块用于将车型测试数据带入模型中检测车型模型的结果,车型验证模块使用真实跑车数据验证车型模型的可靠性和准确率。所述Softmax回归方法包括以下步骤:在softmax回归中y(i)∈{1,2,...,k本文档来自技高网
...

【技术保护点】
一种基于人工智能Softmax回归方法建立分车型远程定损系统,其特征在于,包括:车型选择子系统,选择车辆所对应的车型数据作为总数据集;数据分类子系统,读取CAE仿真数据和实车数据,并相应对数据进行分类;碰撞检测子系统,判断车辆在行车过程中是否发生碰撞;所述碰撞检测子系统对碰撞训练数据进行学习从而生成碰撞模型,所述碰撞模型建立使用Softmax回归方法;工况检测子系统,判断碰撞发生的所有工况信息;所述工况检测子系统对工况训练数据进行学习从而生成工况模型,所述工况模型建立使用Softmax回归方法;车型检测子系统,判断车辆碰撞时所撞车型;所述车型检测子系统,对车型训练数据进行学习从而生成车型模型,所述车型模型建立使用Softmax回归方法。

【技术特征摘要】
1.一种基于人工智能Softmax回归方法建立分车型远程定损系统,其特征在于,包括:车型选择子系统,选择车辆所对应的车型数据作为总数据集;数据分类子系统,读取CAE仿真数据和实车数据,并相应对数据进行分类;碰撞检测子系统,判断车辆在行车过程中是否发生碰撞;所述碰撞检测子系统对碰撞训练数据进行学习从而生成碰撞模型,所述碰撞模型建立使用Softmax回归方法;工况检测子系统,判断碰撞发生的所有工况信息;所述工况检测子系统对工况训练数据进行学习从而生成工况模型,所述工况模型建立使用Softmax回归方法;车型检测子系统,判断车辆碰撞时所撞车型;所述车型检测子系统,对车型训练数据进行学习从而生成车型模型,所述车型模型建立使用Softmax回归方法。2.如权利要求1所述的基于人工智能Softmax回归方法建立分车型远程定损系统,其特征在于,所述碰撞检测子系统包括,碰撞训练模块、碰撞测试模块、碰撞验证模块,所述碰撞训练模块用于对碰...

【专利技术属性】
技术研发人员:田雨农刘俊俍
申请(专利权)人:大连楼兰科技股份有限公司
类型:发明
国别省市:辽宁;21

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1