本发明专利技术涉及桥梁设计领域,具体涉及一种利用垂直轴风机对大跨度桥梁进行涡振控制的方法,在桥梁的主梁底部设置垂直轴风机,利用垂直轴风机在来流风作用旋转后产生的水平尾流打乱主梁断面规则的漩涡脱落。本发明专利技术具有以下优点:1、无需像目前常用的气动措施那样沿桥梁跨向通长布置,一次性投资相对较少;2、利用风叶旋转产生的尾流打乱桥梁主梁断面规则漩涡脱落,涡振控制效果明显并适用于不同类型桥梁;3、利用风叶的旋转发电,具有可持续性、节能环保和减少投资的优点;4、风叶上可以安装不同颜色的LED灯,在自然风作用下旋转的灯光效果具有改变大跨度桥梁景观的功效。
【技术实现步骤摘要】
本专利技术涉及桥梁设计领域,具体涉及一种利用垂直轴风机对大跨度桥梁进行涡振控制的方法。
技术介绍
处于地球大气边界层内的桥梁不可避免地会受到自然风的作用,而现代桥梁结构正向着跨度更大、更柔、更纤细的方向发展,这必然导致其对风的敏感性增加,桥梁结构的风致振动问题已成为控制大跨度桥梁设计的关键因素之一,特别是对于目前国内正在大量修建的大跨度钢箱梁斜拉桥、钢箱梁悬索桥和钢结构连续梁桥,其主梁断面的涡激共振问题已经成为抗风研究的重点。涡激共振,简称涡振,是一种具有强迫和自激双重特性的自限幅风致振动现象,由气流绕经结构表面时所产生的以某一固定时间间隔有规律地脱落的旋涡所引起。涡激共振虽然不会直接引起桥梁动力失稳破坏,但是,较大振幅的涡振会对桥梁结构的安全和行车舒适性等服务性能产生较大的危害,影响正常使用。此外,涡激共振是大跨度桥梁在低风速下很容易出现的一种风致振动现象,其易发性和振幅之大会对桥梁结构的强度和疲劳性能产生很大的影响。因此各国桥梁工程规范或桥梁抗风规范均要求对涡激共振的发生风速和振动幅值进行控制,在低风速下尽量避免其发生或限制其振动幅值。涡激共振控制措施主要有结构措施,机械措施及气动措施。前两者力学机理明了,但代价昂贵,后者却因代价小实施方便而得到广泛应用。气动措施通过改变截面的气动外形来改变流体对结构的荷载,除了常规的梁高、梁宽、桥梁基本断面的选择外,常用的还有导流板、抑流板、风嘴、整流板、扰流板、分流板、稳定板、中央挡板以及设置通风导流的格子。但是目前涡激共振控制常用的气动措施均需沿桥梁跨度方向通长布置,并且一次性投入高,并需后续维护。
技术实现思路
本专利技术的目的在于提供一种利用垂直轴风机对大跨度桥梁进行涡振控制的方法,解决现有技术结构复杂、一次性投入与后续维护投入高等问题。为了实现上述的目的,采用如下的技术方案。一种利用垂直轴风机对大跨度桥梁进行涡振控制的方法,在桥梁的主梁底部设置垂直轴风机,利用垂直轴风机在来流风作用旋转后产生的水平尾流打乱主梁断面规则的漩涡脱落,从而起到控制涡激共振的作用。垂直轴风机作为三种主要类型的风力发电机之一,具有良好的旋转效果,其尾流呈水平向扩散,尾流影响方向为顺风向和横风向,影响范围较广。垂直轴风机用于大跨度桥梁涡激共振控制时,其顺风向和横风向扩散的尾流可以大范围内地、有效地打乱漩涡脱落,避免漩涡出现明显的卓越频率,从产生机理上控制涡激共振的发生。上述方案中,先研究桥梁,找出主梁底部涡振常发位置,在涡振常发位置设置垂直轴风机。一般情况下,在桥梁的横向上,垂直轴风机设置在主梁断面底部转角处,在桥梁的纵向上,垂直轴风机等间距设置。本专利技术包括以下步骤:S1.以桥梁为原型,按照一定的几何缩尺比设计并制作桥梁节段模型,检验桥梁节段模型的涡振性能,确定进行涡振控制效果检验的工况;S2.按照与节段模型相同的几何缩尺比设计并制作不同规格的垂直轴风机模型;S3.将不同规格的垂直轴风机模型分别设置在桥梁节段模型的主梁底部,进行涡振控制效果检验,不同规格包括垂直轴风机的数量、翼型、高度、风叶数等;S4.对不同规格的影响因素进行研究,优化垂直轴风机模型,得出涡振控制效果最优的垂直轴风机方案;S5.根据最优的垂直轴风机方案制作垂直轴风机并设置在桥梁的主梁底部。上述方案中,检验桥梁节段模型的涡振性能为检验不同风攻角、不同结构状态模型的涡激共振性能,记录发生涡激共振的振动幅度、风速锁定区间、涡激共振发生频率、起振风速。所述结构状态包括成桥状态和施工状态。主梁上可以设置有蓄电池组和供电系统,垂直轴风机、蓄电池组和供电系统依次连接,为桥梁上的用电设备提供电能。无论涡激共振是否发生,垂直轴风机的风力发电功能均可用于桥梁供电,减少桥梁运营投入。垂直轴风机的风叶上可以设置彩色LED灯,彩色LED灯可以由所在的垂直轴风机直接供电,或通过桥梁的供电系统供电,在自然风作用下旋转的彩色LED灯光效果具有改变大跨度桥梁景观的功能。与现有技术相比,本专利技术具有以下优点:1、垂直轴风机旋转产生的尾流具有横风向和顺风向水平扩散的特点,用于涡振控制措施时只需等间距地布置一定的数量,而无需像目前常用的气动措施那样沿桥梁跨向通长布置,一次性投资相对较少;2、垂直轴风机用于涡振控制措施的原理是利用风叶旋转产生的尾流打乱桥梁主梁断面规则漩涡脱落,由于其尾流影响区域大,蕴含能量大,对规则漩涡的打乱效果好,涡振控制效果明显并适用于不同类型桥梁;3、垂直轴风机作为涡振控制措施的同时还可以利用风叶的旋转发电,收集的风能可用于大跨度桥梁日常运营的用电需求,具有可持续性、节能环保和减少投资的优点;4、垂直轴风机的风叶上可以安装不同颜色的LED灯,其供电可由风机自身提供,在自然风作用下旋转的灯光效果具有改变大跨度桥梁景观的功效。附图说明图1为本专利技术的步骤流程图;图2为实施例一的结构示意图;图3为实施例二的结构示意图;图4为实施例三的结构示意图。具体实施方式下面结合附图对本专利技术作进一步的描述。本专利技术为一种利用垂直轴风机对大跨度桥梁进行涡振控制的方法,在桥梁的主梁底部设置垂直轴风机,利用垂直轴风机在来流风作用旋转后产生的水平尾流打乱主梁断面规则的漩涡脱落。先研究桥梁,找出主梁底部涡振常发位置,在涡振常发位置设置垂直轴风机。一般情况下,在桥梁的横向上,垂直轴风机设置在主梁断面底部转角处,在桥梁的纵向上,垂直轴风机等间距设置。本专利技术的流程如图1所示,包括以下步骤:S1.以桥梁为原型,按照一定的几何缩尺比设计并制作桥梁节段模型,检验桥梁节段模型的涡振性能,确定进行涡振控制效果检验的工况;S2.按照与节段模型相同的几何缩尺比设计并制作不同规格的垂直轴风机模型;S3.将不同规格的垂直轴风机模型分别设置在桥梁节段模型的主梁底部,进行涡振控制效果检验,不同规格包括垂直轴风机的数量、翼型、高度、风叶数等;S4.对不同规格的影响因素进行研究,优化垂直轴风机模型,得出涡振控制效果最优的垂直轴风机方案;S5.根据最优的垂直轴风机方案制作垂直轴风机并设置在桥梁的主梁底部。检验桥梁节段模型的涡振性能为检验不同风攻角、不同结构状态模型的涡激共振性能,记录发生涡激共振的振动幅度、风速锁定区间、涡激共振发生频率、起振风速。结构状态包括成桥状态和施工状态。主梁上可以设置有蓄电池组和供电系统,垂直轴风机、蓄电池组和供电系统依次连接,为桥梁上的用电设备提供电能。无论涡激共振是否发生,垂直轴风机的风力发电功能均可用于桥梁供电,减少桥梁运营投入。垂直轴风机的风叶上可以设置彩色LED灯,彩色LED灯可以由所在的垂直轴风机直接供电,或通过桥梁的供电系统供电,在自然风作用下旋转的彩色LED灯光效果具有改变大跨度桥梁景观的功能。对于常见典型的主梁类型,应用本专利技术只是在安装垂直轴风机的位置处局部加固,无需进行大改造。实施例一,垂直轴风机2安装于闭口扁平箱型主梁1的结构,如图1所示。实施例二,垂直轴风机2安装于双边肋主梁1的结构,如图2所示。实施例三,垂直轴风机2安装于开口扁平箱型主梁1的结构,如图3所示。经研究和试验,垂直轴风机尾流影响区域大,蕴含能量大,对规则漩涡的打乱效果好,涡振控制效果明显并适用于不同类型桥梁。本文档来自技高网...
【技术保护点】
一种利用垂直轴风机对大跨度桥梁进行涡振控制的方法,其特征在于,在桥梁的主梁底部设置垂直轴风机,利用垂直轴风机在来流风作用旋转后产生的水平尾流打乱主梁断面规则的漩涡脱落。
【技术特征摘要】
1.一种利用垂直轴风机对大跨度桥梁进行涡振控制的方法,其特征在于,在桥梁的主梁底部设置垂直轴风机,利用垂直轴风机在来流风作用旋转后产生的水平尾流打乱主梁断面规则的漩涡脱落。2.根据权利要求1所述的利用垂直轴风机对大跨度桥梁进行涡振控制的方法,其特征在于,研究桥梁,找出主梁底部涡振常发位置,在涡振常发位置设置垂直轴风机。3.根据权利要求1所述的利用垂直轴风机对大跨度桥梁进行涡振控制的方法,其特征在于,包括以下步骤:S1.以桥梁为原型,按照一定的几何缩尺比设计并制作桥梁节段模型,检验桥梁节段模型的涡振性能,确定进行涡振控制效果检验的工况;S2.按照与节段模型相同的几何缩尺比设计并制作不同规格的垂直轴风机模型;S3.将不同规格的垂直轴风机模型分别设置在桥梁节段模型的主梁底部,进行涡振控制效果检验;S4.对不同规格的影响因素进行研究,优化垂直轴风机模型,得出涡振控制效果最优的垂直轴风机方案;S5.根据最优的垂直轴风机方案制作垂直轴风机并设置在桥梁的主梁底部。4.根据权利要求3所述的利用垂直轴风机对大跨...
【专利技术属性】
技术研发人员:周奇,张春,
申请(专利权)人:汕头大学,
类型:发明
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。