基于物联网的智能农业机械控制方法技术

技术编号:13900053 阅读:107 留言:0更新日期:2016-10-25 14:25
本发明专利技术涉及一种基于物联网的智能农业机械控制方法,包括以下步骤:农机控制系统上电,农机控制系统启动故障自检程序;故障自检程序检测农机的发动机和农机的作业部件相关传感器是否正常工作;农机控制系统开始运行,所述主控芯片将发动机参数采集信息、作业部件相关传感器的采集信息、环境参数采集传感器的采集信息统一制成数据包发送至上位机,所述主控芯片每1~10分钟向上位机发送一次数据包;上位机接收到农机控制系统上传的数据之后,发送至远程服务器。本发明专利技术通过实时跟踪农业机械的播种、收割、农药、施肥等作业参数以及环境参数,并跟踪农机的运行轨迹,消耗流量少,监控准确,人机交互性强。

【技术实现步骤摘要】

本专利技术涉及农业机械
,特别是涉及一种基于物联网的智能农业机械控制方法
技术介绍
我国是农业大国,但是多数农业生产基本靠人力劳动完成,如多数乡村中播种,施肥,灌溉及收割等操作,主要依靠纯人力劳动,这样不但效率低,而且影响农作物的生长和收成。即使有些地方实现了机械化播种和收割,通常也需要人力配合,而播种和收割等机械化操作彼此独立,没有合理的联系在一起,也影响了农业机械作业的效率和生产周期。另外农业灌溉的时机与浇水量基本靠人的经验进行判断,并不能准确的判断出农作物的灌溉时间与灌溉量,灌溉不当将导致农作物减产、浪费水资源等严重后果。随着物联网技术的发展和对建设现代农业的需求,将物联网与农业机械作业有机的结合起来,对于提高农业机械作业的效率与产量具有重要意义。但是我国农业生产环境多变,农业生产过程分散,生产主体复杂,需求千变万化等困难。现有技术主要对单个农业机械作业中某一方面进行物联网监控,(例如发动机参数、环境参数、作业信息参数、绞龙参数等)提供机械化的智能服务,而多组传感信息分别传输,这样加大了物联网对统一区域内所有农机数据整合云计算的难度。
技术实现思路
本专利技术所要解决的技术问题是提供一种基于物联网的智能农业机械控制方法,第一,通过实时跟踪农业机械的播种、收割、农药、施肥等作业参数以及环境参数,并跟踪农机的运行轨迹,通过上位机的云计算完成区域内的物联网农业作业监控,保证了农业作业的大范围、智能化、低故障率、高效率的作业,避免大片区域内的农业机械在联合作业的过程中,单个或者一组农业机械发生故障时,会影响到后续的农业机械作业,导致整个农业生产周期延长的问题,本专利技术可以对一个农场区域甚至某市、某省全部农场区域内所有的农业机械作业进行统一物联网监视和控制,给出具体采集农业机械的发动机柴油储量、柴
油压力、发动机转速、发动机温度、启动电机电压、农业机械行走轨迹、农业机械实时位置、农业机械装载量、绞龙控制、环境温湿度等数据信息的方案。第二,数据信息通讯方案以及云服务器整合某区域内的农业机械实时信息以及优化调度控制方案,使某区域内的所有农业机械在最短的作业周期内,工作效率化、作业标准化、人机交互人性化。第三,本专利技术控制方法带有故障自检功能,降低了传感参数错误给云计算带来的误差。第四,本专利技术的各项检测参数采集时间间距更短,参数的变化量检测更精确,采集信息与GPS定位一一对应可以减小中间数据丢失而导致的参数数据与GPS定位不对应的误差,减小上位机指令发出的错误概率。第五,本专利技术系统更新消耗流量少,系统更新带有回复出厂设定的备用系统版本,减小了农机因为系统错误导致系统崩溃的情况。第六,本专利技术农机控制系统具有备用系统区,备用系统区与农机上次运行系统一致,版本更新时,系统可以继续运行。本专利技术解决其技术问题所采用的技术方案是:基于物联网的智能农业机械控制方法,包括以下步骤:S01:农机控制系统上电,农机控制系统启动故障自检程序;S02:故障自检程序检测农机的发动机和农机的作业部件相关传感器是否正常工作、农机本地参数显示驱动是否正常、环境参数采集传感器是否正常工作中的一种或几种;S03:若S02中各项传感器可正常工作,则进入步骤S04;若S02中出现有传感器不能正常运行,则本地标记故障传感器,再进入步骤S04;S04:农机控制系统的主控芯片通过通讯模块发送包含该农机识别信息的注册帧至上位机,若接收到上位机的确认报文之后,进入下一步骤;S05:农机控制系统开始运行,农机的发动机参数采集信息由ECU控制单元通过CAN总线传输给主控芯片,农机的作业部件相关传感器的采集参数和环境参数采集传感器的采集参数均传输给主控芯片;S06:所述主控芯片将发动机参数采集信息、作业部件相关传感器的采集信息、环境参数采集传感器的采集信息统一制成数据包发送至上位机,所述主控芯片每1~30分钟向上位机发送一次数据包;S07:在步骤S05发生的同时,若作业部件相关传感器中的车速传感器检测到农机在运行,则主控芯片控制农机控制系统的GPS定位模块采集农机的GPS定位信息,并间隔1~10秒将该位置信息由通讯模块发送至上位机;若作业部件相关传感器中的车速传感器检
测到农机停止运行,则主控芯片停止向上位机发送位置信息;S08:上位机接收到步骤S06和步骤S07中农机控制系统上传的数据之后,发送至远程服务器。进一步地,步骤S08中,上位机在接收到步骤S06和步骤S07中农机控制系统上传的数据之后,会对步骤S06中的数据和步骤S07中的数据进行时间配对,步骤S06中的数据时间间隔较长,步骤S07中的数据时间间隔较短,上位机可以通过数据处理得出随着农机运行轨迹变化,发动机参数采集信息、作业部件相关传感器的采集信息、环境参数采集传感器的采集信息的变化情况,时间配对后的步骤S06中的数据和S07中的数据会统一发送至远程服务器,优选地,时间配对过程中,上位机还会对数据包含的时间进行校准。进一步地,当上位机间隔预定时间没有收到已注册农机控制系统上传的数据包时,上位机对该农机控制系统发送访问请求采集信息。进一步地,当上位机接收到某农机控制系统的注册帧中包含的农机识别信息与其他农机控制系统的农机识别信息重叠时,上位机向后发送注册帧的农机控制系统发送修改配置信息,该修改配置信息中包含上位机重新生成的该农机控制系统的识别码,农机控制系统接收到该修改配置信息之后,由主控芯片修改存储的自身识别信息。进一步地,所述步骤S06中的发送数据包中的各个传感器采集信息均携带了对应该采集信息的时间值。进一步地,所述步骤S02之前还包括故障自检程序先检测网络连接是否正常、再检测农机控制程序版本是否需要更新的步骤;若网络连接正常,农机控制程序不需要更新,则直接进入下一步步骤;若网络连接正常,农机控制程序需要更新,则先在扩展存储模块的备用系统区下载更新版本,下载完成后,启动备用系统区进行控制,系统区作为系统更新后的备用系统区;若网络连接不正常,则使用原程序执行下一步步骤。进一步地,所述步骤S06中,还包括主控芯片将发动机参数采集信息、作业部件相关传感器的采集信息、环境参数采集传感器的采集信息通过仪表总装本地显示的步骤。进一步地,所述步骤S03中,若S02中出现有传感器不能正常运行,则本地标记故障传感器之后还包括将传感器故障信息文本传输给上位机的步骤。进一步地,所述步骤S06中,当网络连接异常时,主控芯片按照发动机计时器的计时信息映射发动机参数信息,并存储至农机控制系统的扩展存储器中,所述农机的作业部件采集信息和环境参数采集信息由各个传感器传输给主控芯片,主控芯片按照自身计时器的
计时信息映射各个传感器的参数信息,并存储至农机控制系统的扩展存储器中;该储存信息保存至网络连接正常时,由主控芯片发送至上位机。进一步地,在步骤S06中,所述农机控制系统和上位机发送的数据包中,相同功能的数据帧使用相同的结构。进一步地,在步骤S06中,所述农机控制系统和上位机之间的通讯协议使用的字节序为小端字节序:Little-Endian。Little-Endian就是指低位字节排放在内存的低地址端,高位字节排放在内存的高地址端。比如int a=0x05060708。进一步地,所述注册帧的结构本文档来自技高网
...

【技术保护点】
基于物联网的智能农业机械控制方法,其特征在于,包括以下步骤:S01:农机控制系统上电,农机控制系统启动故障自检程序;S02:故障自检程序检测农机的发动机和农机的作业部件相关传感器是否正常工作、农机本地参数显示驱动是否正常、环境参数采集传感器是否正常工作中的一种或几种;S03:若S02中各项传感器可正常工作,则进入步骤S04;若S02中出现有传感器不能正常运行,则本地标记故障传感器,再进入步骤S04;S04:农机控制系统的主控芯片通过通讯模块发送包含该农机识别信息的注册帧至上位机,若接收到上位机的确认报文之后,进入下一步骤;S05:农机控制系统开始运行,农机的发动机参数采集信息由ECU控制单元通过CAN总线传输给主控芯片,农机的作业部件相关传感器的采集参数和环境参数采集传感器的采集参数均传输给主控芯片;S06:所述主控芯片将发动机参数采集信息、作业部件相关传感器的采集信息、环境参数采集传感器的采集信息统一制成数据包发送至上位机,所述主控芯片每1~30分钟向上位机发送一次数据包;S07:在步骤S05发生的同时,若作业部件相关传感器中的车速传感器检测到农机在运行,则主控芯片控制农机控制系统的GPS定位模块采集农机的GPS定位信息,并间隔1~10秒将该位置信息由通讯模块发送至上位机;若作业部件相关传感器中的车速传感器检测到农机停止运行,则主控芯片停止向上位机发送位置信息;S08:上位机接收到步骤S06和步骤S07中农机控制系统上传的数据之后,发送至远程服务器。...

【技术特征摘要】
1.基于物联网的智能农业机械控制方法,其特征在于,包括以下步骤:S01:农机控制系统上电,农机控制系统启动故障自检程序;S02:故障自检程序检测农机的发动机和农机的作业部件相关传感器是否正常工作、农机本地参数显示驱动是否正常、环境参数采集传感器是否正常工作中的一种或几种;S03:若S02中各项传感器可正常工作,则进入步骤S04;若S02中出现有传感器不能正常运行,则本地标记故障传感器,再进入步骤S04;S04:农机控制系统的主控芯片通过通讯模块发送包含该农机识别信息的注册帧至上位机,若接收到上位机的确认报文之后,进入下一步骤;S05:农机控制系统开始运行,农机的发动机参数采集信息由ECU控制单元通过CAN总线传输给主控芯片,农机的作业部件相关传感器的采集参数和环境参数采集传感器的采集参数均传输给主控芯片;S06:所述主控芯片将发动机参数采集信息、作业部件相关传感器的采集信息、环境参数采集传感器的采集信息统一制成数据包发送至上位机,所述主控芯片每1~30分钟向上位机发送一次数据包;S07:在步骤S05发生的同时,若作业部件相关传感器中的车速传感器检测到农机在运行,则主控芯片控制农机控制系统的GPS定位模块采集农机的GPS定位信息,并间隔1~10秒将该位置信息由通讯模块发送至上位机;若作业部件相关传感器中的车速传感器检测到农机停止运行,则主控芯片停止向上位机发送位置信息;S08:上位机接收到步骤S06和步骤S07中农机控制系统上传的数据之后,发送至远程服务器。2.根据权利要求1所述的基于物联网的智能农业机械控制方法,其特征在于,所述步骤S02之前还包括故障自检程序先检测网络连接是否正常、再检测农机控制程序版本是否需要更新的步骤;若网络连接正常,农机控制程序不需要更新,则直接进入下一步步骤;若网络连接正常,农机控制程序需要更新,则先下载更新版本;若网络连接不正常,则使用原程序执行下一步步骤。3.根据权利要求1所述的基于物联网的智能农业机械控制方法,其特征在于,所述步骤S04中,当上位机接收到某农机控制系统的注册帧中包含的农机识别信息与其他农机控制系统的农机识别信息重叠时,上位机向后发送注册帧的农机控制系统发送修改配置信息,该修改配置信息中包含上位机重新生成的该农机控制系统的识别码,农机控
\t制系统接收到该修改配置信息之后,由主控芯片修改存储的自身识别信息。4.根据权利要求1所述的基于物联网的智能农业机械控制方法,其特征在于,所述步骤S04中,当上位机间隔预定时间没有收到已注册农机控制系统上传的数据包时,上位机对该农机控制系统发送访问请求采集信息。5.根据权利要求1所述的基于物联网的智能农业机械控制方法,其特征在于,所述步骤S08中,上位机在接收到步骤S06和步骤S07中农机控制系统上传的数据之后,会对步骤S06中的数据和步骤S07中的数据进行时间配对,步骤S06中的数据时间间隔较长,步骤S07中的数据时间间隔较短,上位机可以通过数据处理得出随着农机运行轨迹变化,发动机参数采集信息、作业部件相关传感器的采集信息、环境参...

【专利技术属性】
技术研发人员:张伟张磊
申请(专利权)人:上海雷尼威尔技术有限公司
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1