一种增益介质自流动蒸气室及包括该蒸气室的DPAL激光器,该蒸气室包括:容器,具有相对设置的第一端部和第二端部,分别用于增益介质的蒸发和收集;第一热交换器和第二热交换器分别设置在所述第一端部和第二端部,在容器内形成腔内横向温度梯度,实现增益介质由所述第一端部和第二端部中一端部蒸发并流向另外一端部收集,有效解决了散热问题,且结构简单。
【技术实现步骤摘要】
本专利技术涉及气体激光
,具体涉及一种增益介质自流动蒸气室及DPAL激光器。
技术介绍
DPAL(Diode Pumped Alkali vapor Laser,半导体泵浦碱金属蒸气激光器)是一种增益介质为蒸气状态碱金属的新型光泵浦气体激光器,增益介质的温度通常为100~200℃。DPAL激光器的增益介质主要为蒸气状态的钾、铷或铯,其能级结构如图1所示。图中,n是最外层电子所在电子层数,钾、铷、铯对应的n分别为4、5、6。nS1/2为基态能级,nP1/2和nP3/2为最外层电子自旋-轨道相互作用而劈裂产生的激发态能级。两激发态能级与基态能级之间的跃迁分别对应于D1和D2线。DPAL激光器首先于2003年,由劳伦斯利弗莫尔国家实验室的Krupke等人实现了碱金属激光器D1线激光输出。这种机制的碱金属激光器采用对应D2线波长的泵浦源泵浦,具有95%以上的量子效率,且增益介质是气体,热透镜效应不明显。因此,DPAL激光器被普遍认为是一种有望实现单口径MW级激光输出的新型激光器。其在高功率输出方面的潜力也得到了国内外众多高功率研发机构的关注。目前DPAL激光器按照增益介质的流动性可以分为增益介质静止和增益介质流动两类。增益介质静止的DPAL激光器一般通过腔体与标准法兰密封的方式将碱金属及所需的缓冲气体密封在密闭腔体内,而增益介质流动的DPAL激光器通过风机强制流动的方式使闭环系统内碱金属蒸气与缓冲气体的混合气体在系统内部流动。目前DPAL激光器存在以下问题:增益介质静止的DPAL激光器在运转过程中由于泵浦激光产生废热而没有有效的散热机制,导致激光器不能实现长时间连续工作。除此之外,由于增益介质静止,因此在冷却的过程中极易导致碱金属在窗口片表面凝结造成窗口片的污染。使用增益介质强制流动方式的DPAL激光器虽然可以通过增益介质流动有效解决散热问题,但系统庞大且复杂,不利于工程实现。
技术实现思路
(一)要解决的技术问题鉴于现有方案存在的问题,为了克服上述现有技术方案的不足,本专利技术提出了一种结构简单并可以实现碱金属蒸气流动散热的自流动碱金属蒸气激光器结构。(二)技术方案根据本专利技术的一个方面,提供了一种增益介质自流动蒸气室,该蒸气室包括:容器,具有相对设置的第一端部和第二端部,分别用于增益介质的蒸发和收集;第一热交换器和第二热交换器分别设置在所述第一端部和第二端部,在容器内形成腔内横向梯度,实现增益介质由所述第一端部和第二端部中一端部蒸发并流向另外一端部收集。根据本专利技术的另一个方面,提供一种DPAL激光器,包括增益介质自流动蒸气室、输出耦合镜及全反射镜,输出耦合镜及全反射镜设置于所述增益介质自流动蒸气室两侧,所述输出耦合镜和全反射镜形成谐振腔,用于出射激光。(三)有益效果从上述技术方案可以看出,本专利技术具有以下有益效果:(1)、蒸气室上下两端均设置一热交换器,其中填装有碱金属的一端设置的热交换器为加热状态,另一热交换器设置为制冷状态,在蒸气室内形成横向的温度梯度,使得碱金属蒸气产生横向流动。本专利技术采用简单的外部控温可实现碱金属蒸气的流动,有效带走泵浦过程中形成的废热;(2)、蒸气室上下两端的热交换器交替处于制热和制冷状态,保持蒸气室内长时间稳定的温度梯度,可以实现蒸气室内增益介质长时间稳定流动,进而保证碱金属激光器长时间稳定运转。(3)、蒸气室左右两端的窗口片周围设置有窗口片加热器,可避免碱金属蒸气在窗口片上冷凝,造成窗口片污染。附图说明图1为现有技术中DPAL激光器的能级结构示意图;图2为本专利技术实施例中蒸气室结构的俯视截面示意图;图3为采用了图2中蒸气室的DPAL激光器结构示意图。【主要元件】1-输出耦合镜; 2-偏振分光棱镜; 3-全反射镜;10-蒸气室;11-碱金属容器; 12-第一热交换器;13-第二热交换器;14-第一激光窗口; 15-第二激光窗口;16-第一窗口片加热器; 17-第二窗口片加热器。具体实施方式本专利技术某些实施例于后方将参照所附附图做更全面性地描述,其中一些但并非全部的实施例将被示出。实际上,本专利技术的各种实施例可以许多不同形式实现,而不应被解释为限于此数所阐述的实施例;相对地,提供这些实施例使得本专利技术满足适用的法律要求。为使本专利技术的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本专利技术进一步详细说明。本专利技术实施例提供一种蒸气室10,如图2示出了蒸气室10的俯视截面示意图,其包括碱金属容器11、第一热交换器12、第二热交换器13、第一激光窗口14、第二激光窗口15、第一窗口片加热器16以及第二窗口片加热器17。碱金属容器11为一对称的四通结构,采用由对碱金属化学性质稳定的材料制成,如不锈钢、玻璃等,优选为不锈钢。左右两端部用于光路传播,左右两端部使用焊有窗口片的CF(Conflat Flang,金属铜圈密封)法兰进行密封。上下两端部用于碱金属的存放、蒸发和/或收集,在手套箱等洁净环境中填装碱金属后通过盲板CF法兰进行密封。经密封的上下两端部分别设置第一热交换器12和第二热交换器13,用于形成碱金属容器11腔内横向温度梯度,使碱金属蒸气实现流动。左右两端部分别设置有给左右两端部的第一激光窗口14、第二激光窗口15加热的第一窗口片加热器16、第二窗口片加热器17。其中第一窗口片加热器16、第二窗口片加热器17优选为环形加热器,分别围绕第一激光窗口14、第二激光窗口15设置。尽管本实施例中,碱金属容器11采用四通结构,本专利技术的保护范围并不限于此,碱金属容器11还可以采用正方体、长方体等常规形状。本实施例中蒸气室10工作时,碱金属容器11上端部填充碱金属材料,将相应的第一热交换器12设置为加热状态,加热温度远高于碱金属材料熔点温度甚至可以高于沸点温度(对于钾、铷、铯的熔点温度分别为63℃、39℃、28.4℃,沸点温度分别为774℃、688℃、678.4℃),使得碱金属受热生成碱金属蒸气,碱金属容器11下端部设置的第二热交换器13设置为制冷状态,制冷温度位于碱金属材料熔点以下,使得碱金属容器11下端部附近的碱金属蒸气冷凝为固态的碱金属,保留在碱金属容器11下端部。在加热端的第一热交换器12和制冷端的第二热交换器13的作用下,蒸气室内横向产生第一温度梯度,梯度方向C如图2所示(梯度方向指向高温区),碱金属蒸气在碱金属容器11内横向流动,这种流动可以带走泵浦过程中形成的废热,流动方向A如图2所示。给左右两端部的第一激光窗口14、第二激光窗口15加热的第一窗口片加热器16、第二窗口片加热器17亦处于加热状态,加热温度略高于加热端的第一热交换器12,此举可以在不影响横向温度梯度的基础上,使制冷端的第二热交换器13成为封闭系统内唯一的冷阱,在确保高温碱金属蒸气在第二热交换器13处冷凝的同时,也防止碱金属蒸气在窗口片上冷凝,造成窗口片污染。保持上述工作状态,直到碱金属容器11上端部的碱金属蒸发殆尽,随后,第一热交换器12和第二热交换器13对换工作状态,即第二热交换器13设置为加热状态,加热温度远高于碱金属材料熔点温度甚至可以高于沸点温度(对于钾、铷、铯的熔点温度分别为63℃、39℃、28.4℃,沸点温度分别为774℃、688℃、678.4℃),使之前冷凝在碱金属容器11下端部的本文档来自技高网...
【技术保护点】
一种增益介质自流动蒸气室,其特征在于,包括:容器(11),具有相对设置的第一端部和第二端部,分别用于增益介质的蒸发和收集;第一热交换器(12)和第二热交换器(13)分别设置在所述第一端部和第二端部,在容器(11)内形成腔内横向温度梯度,实现增益介质由所述第一端部和第二端部中一端部蒸发并流向另外一端部收集。
【技术特征摘要】
1.一种增益介质自流动蒸气室,其特征在于,包括:容器(11),具有相对设置的第一端部和第二端部,分别用于增益介质的蒸发和收集;第一热交换器(12)和第二热交换器(13)分别设置在所述第一端部和第二端部,在容器(11)内形成腔内横向温度梯度,实现增益介质由所述第一端部和第二端部中一端部蒸发并流向另外一端部收集。2.根据权利要求1所述的增益介质自流动蒸气室,其特征在于,还包括:所述第一热交换器(12)和第二热交换器(13)中一个热交换器的温度T蒸发高于所述增益介质的熔点温度,用于增益介质在所述第一端部和第二端部中一端部所述蒸发,另一个热交换器温度T凝结低于所述增益介质的熔点温度,用于增益介质在另一端部凝结收集。3.根据权利要求2所述的增益介质自流动蒸气室,其特征在于,还包括:所述一端部的增益介质蒸发殆尽时,所述第一热交换器(12)和第二热交换器(13)对换工作温度。4.根据权利要求1-3中任一所述的增益介质自流动蒸气室,其特征在于:所述容器(11)还包括相对设置的第三端部和第四端部;所述增益介质自流动蒸气室还包括第一激光窗口(14)和第二激光窗口(15)分别设置于所述第三端部和第四端部,用于透射泵浦光和激光。5.根据权利要求4所述的增益介质自流动蒸气室,其特征在于,还包括:第一窗口片加热器...
【专利技术属性】
技术研发人员:谭荣清,黄伟,李志永,韩高策,李辉,
申请(专利权)人:中国科学院电子学研究所,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。