【技术实现步骤摘要】
:本专利技术是涉及一种半导体功率器件的结构,更具体地说是涉及一种制造在外延硅片上功率器件的背面结构。
技术介绍
:1980年,美国RCA公司申请了第一个IGBT专利,1985年日本东芝公司做出了第一个工业用IGBT。从器件的物理结构上来说,它是非透明集电极穿通型IGBT,简称为穿通型IGBT(Punchthrough IGBT-缩写为PT-IGBT)。PT-IGBT是制造在外延硅片上,一般是在P+衬底上生长一层N型缓冲区,然后再长一N-区,要制造1200V耐压器件,便需要生长一N型缓冲区,掺杂浓度约为1×1017/cm3,厚度约为10um,然后再生长一外延层厚度约为110um,掺杂浓度约为5×1013/cm3至1×1014/cm3的N-区,这是相当厚的外延层。若要制造耐压更高的PT-IGBT,如耐压为2500V或3300V,则N-区需要更厚和更高的电阻率。生长这样规格的外延,技术上有困难,而且成本会急剧增高,所以,PT-IGBT一般只适用于耐压为400V至1200V范围内。早期的PT-IGBT的关断时间相对很长,约有数微秒,为了减短关断时间,提高开关速度,于90年代后,一般都引用高能粒子辐照技术(如电子辐照,氢离子或氦离子辐照等)减小器件中过剩载流子寿命。这种方法能提高PT-IGBT的开关速度,但会使通态电压降为负温度系数。即在导通状态下,如果保持流经
集电极电流不变,则集电极至发电极之间的电压差会随温度升高而降低。在应用时,假如器件某处局部温度较高,则会有更多导通电流流经该处,这会使该处温度变得更高,从而有可能使器件进入一个正反馈状态, ...
【技术保护点】
一种制造在外延硅片上的功率器件包括前面结构与背面结构,前面结构是制造在硅外延层表面上,背面结构至少包括以下部分:(1)在半导体背表面至少有一独立的P+区14,宽度大于10um,这P+区的一边与背面金属相连接形成欧姆接触,另一边是N型缓冲区10,这P+区的掺杂最高浓度范围为5×1018/cm3至1×1020/cm3;(2)在靠近半导体背表面至少有一N型缓冲区10,宽度大于10um,这N型缓冲区10的一边有部分边界是与P+区14相连接,有部分边界是与背面金属相连接形成非欧姆接触,另一边是较低浓度掺杂N型基区9,这N型缓冲区的掺杂最高浓度范围为1×1015/cm3至1×1018/cm3,这N型缓冲区10是在生长外延层过程中形成的;(3)半导体背表面有两种不同的掺杂区与背面金属接触,这两种不同的掺杂区是P+区14和N型缓冲区10,这两种掺杂区域是在生长外延层过程中形成的;(4)半导体背表面与背面金属层相连接形成背面电极,其中金属层与P+区14形成欧姆接触与N型缓冲区10形成非欧姆接触。
【技术特征摘要】
1.一种制造在外延硅片上的功率器件包括前面结构与背面结构,前面结构是制造在硅外延层表面上,背面结构至少包括以下部分:(1)在半导体背表面至少有一独立的P+区14,宽度大于10um,这P+区的一边与背面金属相连接形成欧姆接触,另一边是N型缓冲区10,这P+区的掺杂最高浓度范围为5×1018/cm3至1×1020/cm3;(2)在靠近半导体背表面至少有一N型缓冲区10,宽度大于10um,这N型缓冲区10的一边有部分边界是与P+区14相连接,有部分边界是与背面金属相连接形成非欧姆接触,另一边是较低浓度掺杂N型基区9,这N型缓冲区的掺杂最高浓度范围为1×1015/cm3至1×1018/cm3,这N型缓冲区10是在生长外延层过程中形成的;(3)半导体背表面有两种不同的掺杂区与背面金属接触,这两种不同的掺杂区是P+区14和N型缓冲区10,这两种掺杂区域是在生长外延层过程中形成的;(4)半导体背表面与背面金属层相连接形成背面电极,其中金属层与P+区14形成欧姆接触与N型缓冲区10形成非欧姆接触。2.根据权利要求1所述在部分(4)之半导体背表面,其特征在于它的形成是把完成器件前部结构后,对硅衬底背面进行研磨处理,研磨至衬底与外延层交界处附近,最后对研磨后的背面作去缺陷处理。3.根据权利要求1所述在部分(1)之P+区14,其特征在于有多于一个P+14区,其中至少有一个P+区14的宽度大于100um。4.根据权利要求1所述在部分(2)之N型缓冲区10,其特征在于N型缓冲区10的一边是较低浓度掺杂N型基区9,另一边靠近半导体背表面但可以没有与背面金属相连接,这N型缓冲区10是在生长外延层过程中形成的。5.一种制造在外延硅片上的功率器件包括前面结构与背面结构,前面结构是制造在硅外延层表面上,背面结构至少包括以下部分:(1)在半导体背表面至少有一独立的P+区14,宽度大于10um,这P+区的一边与背面金属相连接形成欧姆接触,侧边是低浓度掺杂的P型区16,另一边是N型缓冲区10,N型缓冲区的掺杂最高浓度范围为1×1015/cm3至1×1018/cm3,这P+区的掺杂最高浓度范围为5×1018/cm3至1×1020/cm3;(2)在靠近半导体背表面至少有一独立的低浓度掺杂的P型区16,宽度大于10um,这低浓度掺杂的P型区16是在P+掺杂区之间,这低浓度掺杂的P型区16有一边与背面金属相连接,有一边是N型缓冲区10,这低浓度掺杂的P型区16的掺杂最高浓度范围为1×1014/cm3至1×1018/cm3;(3)在靠近半导体背面有四种不同的掺杂区,这四种不同的掺杂区是P+区14,低浓度掺杂的P型区16,N型缓冲区10和N型基区9,其中P+区14和N型缓冲区10和N型基区9是在生长外延层过程中形成的,低浓度掺杂的P型区可以是在生长外延层过程中形成的,亦可以是在完成背面研磨后由离子注入形成的;(4)半导体背表面有两种不同的掺杂区与背面金属层相连接形成背面电极,其中P+区14与金属层形成欧姆接触和低浓度掺杂的P型区16与金属层形成非欧姆接触。6.一种制造在外延硅片上的功率器件包括前面结构与背面结构,前面结构是制造在硅外延层表面上,背面结构至少包括以下部分:(1)在半导体背表面至少有一独立的P+区14,宽度大于10um,这P+区的一边与背面金属相连接形成欧姆接触,另一边被N型缓冲区17包围,N型缓冲区的掺杂最高浓度范围为1×1015/cm3至1×1018/cm3,这P+区的掺杂最高浓度范围为5×1018/cm3至1×1020/cm3;(2)在靠近半导体背表面至少有一N型缓冲区17,这N型缓冲区17有一边把P+区14围起来,有一边被较低掺杂N型基区9包围,另有一小部份边界与背面金属相连接形成非欧姆接触,N型缓冲区的掺杂最高浓度范围为1×1015/cm3至1×1018/cm3;(3)半导体背表面有三种不同的掺杂区与背面金属接触,这三种不同的掺杂区是P+区14,N型基区9和N型缓冲区17,这三种掺杂区域是在生长外延层过程中形成的;(4)半导体背表面与背面金属层相连接形成背面电极,其中金属层与P+区14形成欧姆接触,与N型基区9和N型缓冲区17形成非欧姆接触。7.根据权利要求6所述在部分(1)之P+区14,其特征在于有多于一个P+区14,其中至少有一个P+区14的宽度大于100um。8.根据权利要求6所述在部分(1)之N型缓冲区17,其特征在于有多于一个N型缓冲区17,在N型缓冲区17与N型缓冲区17之间靠近背面金属处是一层掺杂低和薄的P型层16,其掺杂最高浓度范围为1×1015/cm3至1×1018/cm3,厚度薄于2um,这样半导体背表面有三种不同的掺杂区与背面金属接触,这三种不同的掺杂区是P+区14,N型缓冲区17和P型薄层16,P+区14和N型缓冲区17是 在生长外延层过程中形成的而P型薄层16是在完成背面研磨后由离子注入形成的。9.一种制造在外延硅片上的功率器件包...
【专利技术属性】
技术研发人员:苏冠创,黄升晖,
申请(专利权)人:南京励盛半导体科技有限公司,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。