实现车辆轨迹流数据异常检测的方法技术

技术编号:13768156 阅读:302 留言:0更新日期:2016-09-29 02:30
本发明专利技术涉及一种实现车辆轨迹流数据异常检测的方法,其中包括确定车辆轨迹时间窗口大小及滑动步径;在当前时间窗口中,记录每个时间点中,待测车辆的相邻车辆信息及对应的时间点;统计当前时间窗口中,相邻车辆总数及具有相邻车辆的时间点的总数;根据相邻车辆总数及对应的时间点的总数,判断当前时间窗口中,待测车辆的轨迹是否异常;选取下一个时间窗口进行待测车辆的轨迹异常检测。采用该种结构的实现车辆轨迹流数据异常检测的方法,引入车辆轨迹异常的定义、引入车辆轨迹流异常检测算法,能判断该车辆轨迹是否为异常;引入车辆轨迹流异常检测优化算法,大大缩短判断该车辆轨迹是否为异常时间,满足实时判定需求,具有更广泛的应用范围。

【技术实现步骤摘要】

本专利技术涉及计算机数据挖掘
,尤其涉及流数据挖掘
,具体是指一种实现车辆轨迹流数据异常检测的方法
技术介绍
车辆轨迹流数据异常检测方法主要实现交通路网车辆轨迹实时流数据的异常检测。近年来,随着流处理技术的深入研究,使得海量车辆轨迹流数据的异常检测问题有望能得到解决,流数据异常检测新算法是车辆轨迹流数据异常检测能否实用的关键。现有车辆轨迹数据分析和挖掘研究常采用在静态数据集上实现轨迹异常检测,轨迹聚类和模式挖掘等。Knorr等人在其发表的论文中采用基于距离异常检测方法实现时空静态数据库中轨迹数据挖掘,文中首先把轨迹数据映射到特征空间;然后基于轨迹之间的距离去度量轨迹之间的关系,此方法不适合流数据轨迹的挖掘。Li等人在其发表的论文提出基于分类轨迹异常检测算法,首先轨迹采用离散分段模式的motifs表示,然后采用通过训练学习后的基于规则分类器,把轨迹分类成正常和异常标签,但是此算法不能被应用到流数据轨迹挖掘中,因为此算法需要离线学习训练阶段和含有分类标签的训练数据集去训练分类器。Lee等人在其发表的论文中提出采用两步轨迹异常检测方法,第一步,每一个轨迹被分区成t个分区序列,然后采用基于距离或密度方法去度量t个分区序列,以发现异常轨迹,但本专利技术的目的去发现异常车辆。Bu等人提出检测异常分段轨迹流数据方法,假定轨迹流数据是分段连续,并且在短时间间隔内,轨迹数据被认为一致。他采用一个基础窗口把感兴趣一段轨迹分成小段,然后在一个大的窗口中去分析其与历史轨迹分段的相似性,以发现此轨迹分段是否异常,此方法聚焦于发现异常轨迹分段。而不是发现异常轨迹对象。Liu等人研究交通流数据中异常发现方法,他首先把城市划分成区域,把每一个区域映射成1个顶点,轨迹被简化成各区域之间的连线,最后形成一张图,交通流数据挖掘问题被转化成频繁子图挖掘,能挖掘出每一个时间帧子图两点之间异常连接的数目,此方法聚焦于发
现异常区域,而不是异常的轨迹对象。Lee等人还研究了轨迹聚类和模式挖掘等其他问题。综上可知,现有的轨迹流数据异常检测方法主要在以下3方面:静态时空数据的轨迹异常检测;轨迹流数据的异常检测,轨迹聚类和模式挖掘。但针对于车辆轨迹流对象异常检测方面研究很少。本专利技术在分析车辆轨迹时空特性基础上,提出了基于车辆轨迹流数据异常检测算法;为交通管理实时侦测异常车辆轨迹提供技术支撑。
技术实现思路
本专利技术的目的是克服了上述现有技术的缺点,提供了一种实现车辆轨迹流数据异常检测的方法,主要解决实时发现车辆轨迹异常问题,首先定义车辆轨迹异常问题,然后提出车辆轨迹异常检测算法,并提出合适的数据结构存储车辆轨迹异常检测数据,并在此算法基础上,提出了车辆轨迹异常检测优化方法,为交通路网车辆轨迹异常发现的实用奠定基础。为了实现上述目的,本专利技术具有如下构成:该实现车辆轨迹流数据异常检测的方法,其主要特点是,所述的方法包括如下步骤:(1)确定车辆轨迹时间窗口大小及滑动步径;(2)在当前时间窗口中,记录每个时间点中,待测车辆的相邻车辆信息及对应的时间点;(3)统计当前时间窗口中,相邻车辆总数及具有相邻车辆的时间点的总数;(4)根据相邻车辆总数及对应的时间点的总数,判断当前时间窗口中,待测车辆的轨迹是否异常;(5)待测车辆的轨迹正常时选取下一个时间窗口进行待测车辆的轨迹异常检测。较佳地,所述的相邻车辆为与待测车辆的距离d小于预设阈值D的车辆。所述的步骤(2),包括以下步骤:(2-1)从当前时间窗口的开始时间点,获取待测车辆的相邻车辆信息及对应的时间点,并记录为车辆轨迹相邻车辆数据结构<车辆信息;时间点>;(2-2)随着时间窗口的滑动,在车辆轨迹相邻车辆数据结构中增加新增时间点的相邻车辆信息及对应的时间点,并删除失效的时间点及对应的相邻车辆信息,然后分别记录各个时间点的车辆轨迹相邻车辆数据结构。所述的步骤(3),具体为:遍历当前时间窗口中的车辆轨迹相邻车辆数据结构,统计相邻车辆的总数k,以及具有相邻车辆的时间点的总数s。所述的步骤(4)包括以下步骤:(4-1)判断相邻车辆的总数k是否小于预设阈值K且具有相邻车辆的时间点的总数s是否大于预设阈值S,如果是,则继续步骤(4-2),否则继续步骤(4-3);(4-2)判断当前时间窗口中,待测车辆的轨迹异常,然后结束退出;(4-3)判断当前时间窗口中,待测车辆的轨迹正常,然后继续步骤(5)。所述的步骤(5),具体为:选取下一个时间窗口作为当前时间窗口,然后继续步骤(2)。所述的步骤(5),包括以下步骤:(5-1)选取下一个时间窗口作为当前时间窗口;(5-2)滑动当前时间窗口,判断当前时间窗口开始时间是否小于历史窗口中包含相邻车辆总数为k、时间窗口m中的s个时间窗口的开始时间,如果是,则继续步骤(5-3),否则继续步骤(2);(5-3)判断当前时间窗口中,待测车辆的轨迹正常,然后继续步骤(5-1)。采用了该专利技术中的实现车辆轨迹流数据异常检测的方法,引入车辆轨迹异常的定义、引入车辆轨迹流异常检测算法,能判断该车辆轨迹是否为异常;引入车辆轨迹流异常检测优化算法,大大缩短判断该车辆轨迹是否为异常时间,满足实时判定需求,具有更广泛的应用范围。附图说明图1为本专利技术的车辆轨迹流异常检测算法的流程图。图2为本专利技术的车辆轨迹流异常检测优化算法的流程图。具体实施方式为了能够更清楚地描述本专利技术的
技术实现思路
,下面结合具体实施例来进行进一步的描述。本专利技术的车辆轨迹流数据异常检测方法,包括以下几方面:1)车辆轨迹异常的定义;2)车辆轨迹异常检测算法;3)车辆轨迹异常检测优化算法。1)车辆轨迹异常的定义车辆轨迹为Tri,通行时间点为t,车辆之间相隔距离为d(欧式距离),假定在同一时间点t,车辆之间相隔距离小于等于D(阀值)的相邻车辆总数为k,则在给定所属的时间窗口范围为[T1,Tm]中的m个时间点,若存在车辆间隔距离小于等于D的同一时间点总数s大于m中的S个时间点(S<m)(S为阀值),并且相邻车辆(指两车之间欧式距离d小于阀值D)总数k小于
K,则称该车辆为轨迹异常,否则不是轨迹异常。2)车辆轨迹流异常检测算法获取当前时间窗口中每一个时间点,车辆之间相隔距离小于等于D的相邻车辆信息保存在<carid;timepointvalueList>数据结构中(carid为车辆标识,timepointvalueList为时间点集合),随着时间窗口滑动,在上述数据结构中,保存新增时间点的相邻车辆信息carid及对应的时间点,并删除失效时间点的相邻车信息carid及对应的时间点,到达时间窗口终止时间点时,可统计上述数据结构中相邻车carid的总数和时间点timepointvalueList的总数。如判断车辆1轨迹是否异常,先把与车辆1轨迹相邻的车辆信息保存如下形式,<Tr2;t1,t2,t3>,<Tr3;t2,t4>,<Tr4;t1,t4,t6>等数据结构中,等到当前时间窗口最后一个时间点m时,再判断carid与timepointvalueList相关的统计计数是否符合车辆轨迹异常定义要求,给出是否异常车辆轨迹结论。3)车辆轨迹流异常检测优化算法在2)中算法,需要全表扫描本文档来自技高网
...

【技术保护点】
一种实现车辆轨迹流数据异常检测的方法,其特征在于,所述的方法包括如下步骤:(1)确定车辆轨迹时间窗口大小及滑动步径;(2)在当前时间窗口中,记录每个时间点中,待测车辆的相邻车辆信息及对应的时间点;(3)统计当前时间窗口中,相邻车辆总数及具有相邻车辆的时间点的总数;(4)根据相邻车辆总数及对应的时间点的总数,判断当前时间窗口中,待测车辆的轨迹是否异常;(5)待测车辆的轨迹正常时选取下一个时间窗口进行待测车辆的轨迹异常检测。

【技术特征摘要】
1.一种实现车辆轨迹流数据异常检测的方法,其特征在于,所述的方法包括如下步骤:(1)确定车辆轨迹时间窗口大小及滑动步径;(2)在当前时间窗口中,记录每个时间点中,待测车辆的相邻车辆信息及对应的时间点;(3)统计当前时间窗口中,相邻车辆总数及具有相邻车辆的时间点的总数;(4)根据相邻车辆总数及对应的时间点的总数,判断当前时间窗口中,待测车辆的轨迹是否异常;(5)待测车辆的轨迹正常时选取下一个时间窗口进行待测车辆的轨迹异常检测。2.根据权利要求1所述的实现车辆轨迹流数据异常检测的方法,其特征在于,所述的相邻车辆为与待测车辆的距离d小于预设阈值D的车辆。3.根据权利要求1所述的实现车辆轨迹流数据异常检测的方法,其特征在于,所述的步骤(2),包括以下步骤:(2-1)从当前时间窗口的开始时间点,获取待测车辆的相邻车辆信息及对应的时间点,并记录为车辆轨迹相邻车辆数据结构<车辆信息;时间点>;(2-2)随着时间窗口的滑动,在车辆轨迹相邻车辆数据结构中增加新增时间点的相邻车辆信息及对应的时间点,并删除失效的时间点及对应的相邻车辆信息,然后分别记录各个时间点的车辆轨迹相邻车辆数据结构。4.根据权利要求3所述的实现车辆轨迹流数据异常检测的方法,其特征在于,所述的步...

【专利技术属性】
技术研发人员:赵郁亮胡玲玲徐旭
申请(专利权)人:公安部第三研究所
类型:发明
国别省市:上海;31

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1