【技术实现步骤摘要】
本专利技术涉及机动目标跟踪领域,尤其涉及一种改进权值的变结构多模型机动目标跟踪方法,可用于对高速机动目标的跟踪。
技术介绍
由于目标跟踪在国防和民用各领域的重要价值,一直以来很多学者致力于研究目标跟踪算法。随着现代航空的迅速发展,各种飞行器的机动性和运动速度越来越高,单模型算法很难满足跟踪速度和精度的需求,而多模型算法可以避免采用单模型时由于目标机动而造成模型的不准确,提高机动目标跟踪性能,从而实现对强机动目标的精确跟踪。但多模型中每个模型的权值自适应变化是一个难点,目前广泛采用的交互式多模型IMM算法,根据先验概率和马尔科夫转移矩阵调整权值(即后验概率),具有较好的自适应能力。但是IMM算法中该先验概率和转移矩阵是人为设置的,极大影响权值的变化,而且多模型之间的交互,在模型很多时计算量十分庞大。除此之外,因为IMM算法中每一个模型都固定不变,在所设的模型都不符合实际运动模型的情况下,IMM算法跟踪性能无疑会很差。现在有为此改进的变结构IMM算法,虽然解决了IMM算法中模型固定不变的问题,但需要提前设好尽可能多的模型集,而模型集增删规则也十分复杂,运算量十分庞大。
技术实现思路
针对上述现有技术的不足,本专利技术的目的在于提供一种改进权值的变结构多模型机动目标跟踪方法,能够增强滤波算法的自适应能力,提高雷达在目标强机动下的跟踪精度。实现本专利技术的技术思路是:根据残差方差变化调整多模型的权值,利用变结构和图论的思想,通过改进后的多模型的权值调整滤波器的结构,使多模型采用的机动模型集向着目标真实运动模型逼近,进而使估计信号逼近期望信号,以提高跟踪性能。为达到上 ...
【技术保护点】
一种改进权值的变结构多模型机动目标跟踪方法,其特征在于,所述方法包括如下步骤:步骤1,获取雷达机动目标的位置检测值,对所述位置检测值进行N次采样,得到观测值序列,根据所述观测值序列确定雷达机动目标的第0时刻状态向量和第0时刻协方差矩阵,N为大于1的自然数;步骤2,雷达机动目标运动模型采用联动式转弯运动模型,对所述联动式转弯运动模型设定r个不同的初始角速度,得到r个对应的目标运动子模型和r个对应的系统状态转移矩阵;步骤3,根据第j个目标运动子模型的第k‑1时刻状态向量、第k‑1时刻协方差矩阵、所述观测值序列和其对应的系统状态转移矩阵,计算第j个目标运动子模型的第k时刻新息、第k时刻新息协方差矩阵以及第k时刻增益矩阵,从而得到第j个目标运动子模型的第k时刻状态估计向量和第k时刻状态估计协方差矩阵,j∈(1,2,…r),k≥1,k的初值为1;步骤4,根据所述第j个目标运动子模型的第k时刻新息和第k时刻新息协方差矩阵计算第k时刻新息的平方;步骤5,将第j个目标运动子模型的第k时刻新息的平方与第k‑1时刻新息的平方加权求和,得到第j个目标运动子模型的第k时刻信息修正值;步骤6,重复执行步骤5,得 ...
【技术特征摘要】
1.一种改进权值的变结构多模型机动目标跟踪方法,其特征在于,所述方法包括如下步骤:步骤1,获取雷达机动目标的位置检测值,对所述位置检测值进行N次采样,得到观测值序列,根据所述观测值序列确定雷达机动目标的第0时刻状态向量和第0时刻协方差矩阵,N为大于1的自然数;步骤2,雷达机动目标运动模型采用联动式转弯运动模型,对所述联动式转弯运动模型设定r个不同的初始角速度,得到r个对应的目标运动子模型和r个对应的系统状态转移矩阵;步骤3,根据第j个目标运动子模型的第k-1时刻状态向量、第k-1时刻协方差矩阵、所述观测值序列和其对应的系统状态转移矩阵,计算第j个目标运动子模型的第k时刻新息、第k时刻新息协方差矩阵以及第k时刻增益矩阵,从而得到第j个目标运动子模型的第k时刻状态估计向量和第k时刻状态估计协方差矩阵,j∈(1,2,…r),k≥1,k的初值为1;步骤4,根据所述第j个目标运动子模型的第k时刻新息和第k时刻新息协方差矩阵计算第k时刻新息的平方;步骤5,将第j个目标运动子模型的第k时刻新息的平方与第k-1时刻新息的平方加权求和,得到第j个目标运动子模型的第k时刻信息修正值;步骤6,重复执行步骤5,得到r个目标运动子模型的第k时刻信息修正值,并根据所述r个目标运动子模型的第k时刻信息修正值计算对应目标运动子模型的第k时刻权值;步骤7,根据步骤3至步骤6所得到的r个目标运动子模型的第k时刻状态估计向量、第k时刻状态估计协方差矩阵以及第k时刻权值,得到r个目标运动子模型第k时刻总体状态估计向量和第k时刻总体状态估计协方差矩阵;步骤8,根据r个目标运动子模型第k时刻权值对r个目标运动子模型的角速度进行修正,并将修正后的角速度作为r个目标运动子模型的最新角速度;步骤9,令k的值加1,并依次重复执行步骤3至步骤8,直到k>N-1,从而得到r个目标运动子模型的最新角速度,从而得到r个目标运动子模型对应的系统状态转移矩阵,根据r个目标运动子模型的系统状态转移矩阵对雷达机动目标进行跟踪。2.根据权利要求1所述的一种改进权值的变结构多模型机动目标跟踪方法,其特征在于,步骤1具体包括:(1a)对雷达机动目标的位置进行检测,得到雷达机动目标的位置检测值,并对所述位置检测值进行N次采样,得到观测值序列Z(k),k=1,2,…,N;从观测值序列Z(k)中取出前两个采样点的观测值Z(1),Z(2),其中:Z(1)=[xx(1) yy(1) zz(1)]TZ(2)=[xx(2) yy(2) zz(2)]T式中xx(·),yy(·),zz(·)分别表示雷达机动目标在x轴、y轴、z轴的位置,[·]T表示矩阵的转置;(1b)根据所述观测值序列Z(k)确定雷达机动目标的第0时刻状态向量根据雷达机动目标的第0时刻状态向量确定雷达机动目标的第0时刻协方差矩阵P0:根据观测值Z(1),Z(2),获得雷达机动目标的第0时刻状态向量如下: X ^ 0 = x x ( 2 ) ( x x ( 2 ) - x x ( 1 ) ) / T y y ( 2 ) ( y y ( 2 ) - y y ( 1 ) ) / T z z ( 2 ) ( z z ( 2 ) - z z ( 1 ) ) / T , ]]>其中,(xx(2)-xx(1))/T、(yy(2)-yy(1))/T、(zz(2)-zz(1))/T分别表示雷达机动目标在第2采样点处的x轴方向速度、y轴方向速度、z轴方向速度,T为采样间隔;(1c)根据第0时刻状态向量获得第0时刻协方差矩阵P0:其中,E[·]表示数学期望。3.根据权利要求1所述的一种改进权值的变结构多模型机动目标跟踪方法,其特征在于,步骤2具体包括:对雷达机动目标运动模型设定r个不同的初始角速度ωi,从而得到r个对应的系统状态转移矩阵Φi: Φ i = 1 , 2 , ... , r = 1 sin ( ω i T ) ω 0 - 1 - cos ( ω i T ) ω 0 0 0 cos ( ω i T ) 0 - sin ( ...
【专利技术属性】
技术研发人员:曹运合,闫浩,栾苏珍,彭志刚,周生华,吴文华,
申请(专利权)人:西安电子科技大学,
类型:发明
国别省市:陕西;61
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。