碳化硼基复相陶瓷及其放电等离子烧结制备方法技术

技术编号:13679203 阅读:60 留言:0更新日期:2016-09-08 06:41
本发明专利技术涉及一种碳化硼基复相陶瓷及其放电等离子烧结制备方法,属于复相陶瓷材料制备领域。所述复相陶瓷原料组成及质量百分数如下:铝15~25%,氧化硼20~35%,石墨1.7~3%,碳化硼40%~62%。所述方法如下:将原料进行球磨混合、干燥和过筛,制成混合粉体;采用放电等离子体烧结技术,将混合粉体放入石墨模具,在真空下从室温开始加热、加压,加压至35~45MPa,保持压力至烧结结束,以100℃/min升温至1600~1850℃烧结,保温5~30min;烧结结束,脱模,得到所述复相陶瓷。所述复相陶瓷制备成本较低、致密度高,力学性能好。

【技术实现步骤摘要】

本专利技术涉及一种碳化硼基复相陶瓷及其放电等离子烧结制备方法,属于复相陶瓷材料制备领域。
技术介绍
碳化硼(B4C)陶瓷具有密度低、熔点高、化学稳定性强以及耐磨性好等优良性能,尤其是其高硬度、低密度使其在国防领域的应用尤为突出,常用于装甲车的披挂装甲和航空器的防护面板等场合。但是碳化硼过高的烧结成本和材料本身较大的脆性限制了它的广泛应用,因此对碳化硼这两个方面的改进迫在眉睫。碳化硼陶瓷的制备成本较高,主要原因在于普通的烧结方式的烧结温度高、保温时间长。放电等离子烧结(SPS)是一种新型烧结技术,它能够把金属或无机材料的粉体在相对较低的温度下实现快速致密化。具体制备过程是将粉体原料装入模具,再施以单轴向压力,同时对模具或样品施加直流脉冲大电流;在此过程中,导电模具不仅是成型容器,并且是可以直接加热样品的热源;如果样品也属于导电材料,就可以直接在样品内部产生热量,从而实现样品内外同时加热,提升能量利用率。放电等离子烧结技术是低温快速制备陶瓷材料的有效途径之一,通过该技术能够进一步地提高烧结效率。现有技术中,Klotz添加Al2O3和Fe,用SPS技术制备了相对密度为94%的B4C基复相陶瓷(B.R.Klotz,K.C.Cho,R.J.Dowding.Sintering aids in the consolidation of boron carbide(B4C)by the plasma pressure compaction(P2C)method[J].Materials and Manufacturing Processes,2004,19(4):631-639.);武汉理工大学张联盟以硼(B)粉和碳(C)粉为原料,通过放电等离子烧结技术在1900℃下得到了相对密度95%的B4C陶瓷。现有技术的烧结条件仍有待优化,以进一步降低烧结温度,减少烧结成本。
技术实现思路
针对现有技术存在的缺陷,本专利技术的目的之一在于提供一种碳化硼基复相
陶瓷,本专利技术的目的之二在于提供一种碳化硼基复相陶瓷的放电等离子烧结制备方法。为实现本专利技术的目的,提供以下技术方案。一种碳化硼基复相陶瓷,以所述复相陶瓷原料的总体质量为100%计,其中,各组成成分及其质量百分含量如下:一种本专利技术所述的碳化硼基复相陶瓷的放电等离子烧结制备方法,所述方法步骤如下:(1)将原料进行球磨混合、干燥和过筛,制成混合粉体;所述原料为:粒度为2μm~5μm的铝粉,粒度为1μm~150μm的氧化硼粉,粒度为0.2μm~0.3μm的石墨粉,粒度为1μm~5μm的碳化硼粉;铝粉的纯度为99.99%,氧化硼粉的纯度为99.5%,石墨粉的纯度为99.9%,碳化硼粉的纯度为99%;球磨的球料比为5﹕1,球磨机转速为300r/min,球磨时间为2.5h;介质选用无水乙醇,液料体积百分比为3﹕1;球磨混合后,采用旋转蒸发仪将其中的无水乙醇与固体原料分离;将原料置于恒温鼓风干燥箱中于70℃静置48h进行干燥;干燥后的原料用300目的标准试验筛筛分。(2)将混合粉体放入石墨模具进行放电等离子烧结,反应条件为:在真空下,从室温开始加热、加压,加压至35MPa~45MPa,保持所述压力至烧结结束,以100℃/min的加热速率升温至1600℃~1850℃进行烧结,保温5min~30min;烧结结束,脱模,得到本专利技术所述的一种碳化硼基复相陶瓷。有益效果1.本专利技术提供了一种碳化硼基复相陶瓷,所述复相陶瓷选用易于得到且价格低廉的原材料,制备成本低;2.本专利技术提供了一种碳化硼基复相陶瓷的放电等离子烧结制备方法,所述制备方法能量利用率高、致密化速度快,保温几分钟就能获得致密的碳化硼基
复相陶瓷;3.本专利技术提供了一种碳化硼基复相陶瓷的放电等离子烧结制备方法,所述制备方法烧结过程中产生高放热反应,使混合粉体颗粒产生活化,烧结温度低;4.本专利技术提供了一种碳化硼基复相陶瓷及其放电等离子烧结制备方法,烧结制备到的产品致密度高,性能好;硬度高,可达92HRA~95.5HRA;抗弯强度大,可达400MPa以上;断裂韧性高,可达3.7MPa·m1/2~5.4MPa·m1/2;相对密度大,可达98.5%T.D.左右。具体实施方式下面对本专利技术的优选实施方式做出详细说明。以下实施例中:原料:铝粉的粒度为2~5μm,纯度为99.99%;氧化硼粉的粒度为1~150μm,纯度为99.5%;石墨粉的粒度为0.2~0.3μm,纯度为99.9%;碳化硼粉的粒度为1~5μm,纯度为99%;SPS-3.2-MV放电等离子烧结炉厂家为日本住友商事株式会社;石墨模具采用北京三业碳素有限公司加工的石墨模具,承压极限为45MPa;所述无水乙醇为分析纯产品。实施例1一种碳化硼基复相陶瓷,以所述复相陶瓷原料的总体质量为100%计,其中,各组成成分及其质量百分含量如下:铝18.53%,氧化硼23.89%,石墨2.06%,碳化硼55.52%。本实施例所述碳化硼基复相陶瓷的放电等离子烧结制备方法步骤如下:(1)将原料在球磨机中进行球磨,球磨的球料比为5﹕1,球磨机转速为300r/min,球磨时间为2.5h;介质选用无水乙醇,液料体积百分比为3﹕1,球磨混合后,采用旋转蒸发仪将其中的无水乙醇与固体原料分离;然后将固体原料置于恒温鼓风干燥箱中,于70℃静置48h进行干燥;将干燥后的原料用300目的标准试验筛筛分,制成混合粉体;(2)将混合粉体放入SPS-3.2-MV放电等离子烧结炉的石墨模具中进行放电等离子烧结,石墨模具的内径为15mm,对石墨模具施加直流脉冲电流加热,加热速率为100℃/min,从室温开始缓慢加压,约10min后达到预设压力35MPa,
保压至烧结结束;石墨模具内烧结的产品温度达到1650℃时保温5min,然后关闭放电等离子烧结炉开关,产品随炉冷却,冷却至室温时,卸压,取出石墨模具,脱模,用300#砂纸磨掉表面碳纸,即得最终产品。将最终产品进行如下检测:(1)物相组成检测:用X射线衍射仪(X'Pert PRO MPD,荷兰PANalytical公司)分析最终产品的物相组成,采用CuKa辐射。经检测可知,最终产品的相组成为:主相为B4C,第二相为Al2O3,AlB12C2、Al18B4O33、Al4C3、AlB2和AlB12,为本专利技术所述的碳化硼基复相陶瓷。(2)性能检测:最终产品的体积密度利用Archimedes法进行测试,并根据最终产品相应的理论密度计算最终产品的相对密度(谢志鹏.结构陶瓷[M].北京:清华大学出版社,2011);采用洛氏硬度测试表征最终产品的硬度;最终产品的抗弯强度采用三点弯曲法测试,在电子万能试验机(WDW-E100D,济南试验机厂)上进行测量。采用SENB法在万能试验机上(WDW-E100D,济南试验机厂)测量最终产品的断裂韧性。经检测可知,最终产品性能如下:相对密度为98.7%,洛式硬度为95.5HRA,抗弯强度为400MPa,断裂韧性为4.6MPa·m1/2。实施例2一种碳化硼基复相陶瓷,以所述复相陶瓷原料的总体质量为100%计,其中,各组成成分及其质量百分含量如下:铝15.89%,氧化硼20.47%,石墨1.76%,碳化硼61.88%。本实施例所述碳化硼本文档来自技高网
...

【技术保护点】
一种碳化硼基复相陶瓷,其特征在于:以所述复相陶瓷原料的总体质量为100%计,各组成成分及其质量百分含量如下:

【技术特征摘要】
1.一种碳化硼基复相陶瓷,其特征在于:以所述复相陶瓷原料的总体质量为100%计,各组成成分及其质量百分含量如下:2.一种如权利要求1所述的碳化硼基复相陶瓷的放电等离子烧结制备方法,其特征在于:所述方法步骤如下:(1)将原料依次进行球磨混合、干燥和过筛,制成混合粉体;(2)将混...

【专利技术属性】
技术研发人员:李云凯程兴旺侯桂芹孙川杭晓聪
申请(专利权)人:北京理工大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1