本发明专利技术提供了一种抑制ASE/PO的平面波导激光增益介质构型,该方案包括有芯层、内包层、外包层和端面膜层;芯层为掺杂区,内包层和外包层为非掺杂区;内包层平行设置在芯层外部;外包层平行设置在内包层外部;内包层与芯层组成波导结构;激光发射端面膜设置在波导结构的两端且完全覆盖内包层、外包层和芯层;波导一个端面的法线与芯层平行,另一个端面的法线与芯层之间有特定的角度。该方案采用端面切角的双包层平面波导,能够抑制平面波导中的ASE/PO,易于实现高效率高功率的激光输出。
【技术实现步骤摘要】
本专利技术涉及的是固体激光
,尤其是一种抑制ASE/PO的平面波导激光增益介质构型。
技术介绍
全固态激光器具有效率高、结构紧凑、性能稳定、输出光束质量好等诸多优点,在工业、军事、医疗和科研等方面有广泛应用。特别是在军事和工业加工方面,大功率全固态激光器有很好的应用前景。早期的全固态激光器的增益介质通常选用圆棒或者块状结构,但是在高功率泵浦下存在着严重的热透镜效应和双折射效应,这使增益介质产生很强的光学畸变,限制了高功率的输出功率。为了增大散热表面积,获得高功率的激光输出,从激光出现之初人们就在增益介质形态上做了很多尝试和创新工作,出现了板条、薄片、光纤和平面波导等结构。平面波导结构增益介质是指波导的芯层为掺有激活离子的激光基质,即掺杂区,也称为增益区,包层是无掺杂的激光基质,也可以是一定厚度的光学膜层。平面波导增益介质中,考虑到储能的大小,芯层厚度一般为10~400μm。平面波导结构增益介质通常使用大面冷却散热,理想情况下可以认为是一维方向散热。平面波导激光器通过提供热透镜效应的一维控制以及通过增加导波增益区的宽度和长度进行功率缩放,提供了介于大体积固体激光器和光纤激光器的中间条件。平板波导激光器综合块状固体激光和光纤激光的优点,同时避免两者的缺点:光纤激光的优点在于结构紧凑、效率高、废热导致的光束质量退化较小,缺点在于由于激光亮度极高,非线性效应直接限制最高输出功率;块状固体激光定标放大时则基本不存在非线性效应问题,缺点在于废热导致的光束质量退化严重,同时结构难以实现小型紧凑化。
技术实现思路
本专利技术的目的,就是针对现有技术所存在的不足,而提供一种抑制ASE/PO的平面波导激光增益介质的技术方案,该方案采用内、外包层包裹芯层,能够抑制平面波导中的ASE/PO,易于实现高效率高功率的激光输出。本方案是通过如下技术措施来实现的:一种抑制ASE/PO的平面波导激光增益介质构型,包括有芯层、内包层、外包层和端面膜层;内包层平行设置在芯层外部;外包层平行设置在内包层外部;内包层与芯层组成波导结构;端面膜设置在波导结构的两端且完全覆盖内包层、外包层和芯层。作为本方案的优选:芯层为掺杂区;内包层和外包层为非掺杂区。作为本方案的优选:波导结构一个端面的法线与芯层平行,另一个端面的法线与芯层之间的角度θ为2-15°。作为本方案的优选:芯层的厚度为10-400μm。作为本方案的优选:内包层的厚度为100-1000μm。作为本方案的优选:外包层为体介质或光学倏逝膜。作为本方案的优选:波导结构的长度方向为激光的传输方向。作为本方案的优选:端面膜层对泵浦光和增益介质发射激光都是高透过率。本方案的有益效果可根据对上述方案的叙述得知,由于在该方案中端面做了切角处理,对ASE/PO形成抑制。在增益区产生的自发辐射光入射到内包层和外包层的界面后,如果入射角小于界面的全反射角,光束一部分透射形成损耗,在两个大面之间经过一次芯层形成的增益并不足形成正反馈。如果入射角大于界面的全反射角,光束就会无损耗得传输到倾斜波导端面,每经过倾斜端面一次光束在大面上的入射角就会增大或者减小2θ,多次后光束要么在内包层和外包层的不满足全反射条件而不断衰减,要么在从端面出射无法形成振荡。由此可见,本专利技术与现有技术相比,具有实质性特点和进步,其实施的有益效果也是显而易见的。附图说明图1为本专利技术的侧面(L×T)结构示意图。图2为本专利技术的端面(T×W)结构示意图。图3位本专利技术的全面切角示意图。图中,1为芯层,2为内包层,3为外包层,4为端面膜层。具体实施方式本说明书中公开的所有特征,或公开的所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以以任何方式组合。本说明书(包括任何附加权利要求、摘要和附图)中公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换。即,除非特别叙述,每个特征只是一系列等效或类似特征中的一个例子而已。如图所示,本方案包括有芯层、内包层、外包层和激光发射端面膜层;内包层平行设置在芯层外部;外包层平行设置在内包层外部;内包层与芯层组成波导结构;激光发射端面膜设置在波导结构的两端且完全覆盖内包层、外包层和芯层。一个波导端面与芯层间的夹角为90°,另一个波导端面与芯层间的夹角为75-88°。内包层的厚度为100-1000μm。外包层为体介质或光学倏逝膜。波导结构的长度方向为激光的发射方向。芯层的厚度为10-400μm。实施例Nd:YAG平面波导构型,芯层为Nd:YAG,掺杂浓度为0.5at.%-1.5at.%,芯层厚度d为80μm-200μm,内包层为非掺杂的YAG,整个波导的尺寸为50mm(L)×10mm(W)×1mm(T)。两个10mm×1mm的端面为激光通过面,一个端面与60mm×10mm大面的夹角为90°,另一个端面与60mm×10mm大面的夹角为75-88°,并且两个端面都镀有1064nm的高透膜。采用上述Nd:YAG平面波导构型,搭建平面波导激光放大器。激光工作在准连续模式状态,泵浦源波长为808nm,在脉冲重复频率100Hz时,单脉冲输出能量大于500mJ,光光转换效率50%。 实验表明,该平面波导增益介质构型可以很好的抑制ASE/PO,实现了高效率高功率的激光输出。本专利技术并不局限于前述的具体实施方式。本专利技术扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。本文档来自技高网...
【技术保护点】
一种抑制ASE/PO的平面波导激光增益介质构型,其特征是:包括有芯层、内包层、外包层和端面膜层;所述内包层平行设置在芯层外部;所述外包层平行设置在内包层外部;所述内包层与芯层组成波导结构;所述端面膜设置在波导结构的两端且完全覆盖内包层、外包层和芯层。
【技术特征摘要】
1.一种抑制ASE/PO的平面波导激光增益介质构型,其特征是:包括有芯层、内包层、外包层和端面膜层;所述内包层平行设置在芯层外部;所述外包层平行设置在内包层外部;所述内包层与芯层组成波导结构;所述端面膜设置在波导结构的两端且完全覆盖内包层、外包层和芯层。2. 根据权利要求1所述的一种抑制ASE/PO的平面波导激光增益介质构型,其特征是:所述芯层为掺杂区;所述内包层和外包层为非掺杂区。3. 根据权利要求1所述的一种抑制ASE/PO的平面波导激光增益介质构型,其特征是:所述波导结构一个端面的法线与芯层平行,另一个端面的法线与芯层之间的角度θ为2-15°。4. 根据权利要求1所述的一种抑...
【专利技术属性】
技术研发人员:王君涛,汪丹,徐浏,吴振海,陈月健,周唐建,童立新,高清松,唐淳,
申请(专利权)人:中国工程物理研究院应用电子学研究所,
类型:发明
国别省市:四川;51
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。