钻井用井下水力振荡器模拟测试装置制造方法及图纸

技术编号:13469237 阅读:80 留言:0更新日期:2016-08-05 01:47
本实用新型专利技术公开一种钻井用井下水力振荡器模拟测试装置,包括设置在一固定架上的导向系统、位移传感系统和循环给液测试系统,以及数据采集分析系统,导向系统设置在固定架前端为水力振荡器提供沿轴向往复运动动力源,位移传感系统设置在固定于固定架内的水力振荡器的上接头和外筒的侧壁上,测定在导向系统的推动作用下,水力振荡器的上接头和外筒之间的位移变化;该钻井用井下水力振荡器模拟测试装置用于模拟水力振荡器在井下预受力作用下的工作参数,为振动类井下专用工具类作业设计、现场开发调整工具结构参数及施工工艺提供依据。

【技术实现步骤摘要】


本技术涉及油气田开采领域,特别涉及一种钻井用井下水力振荡器模拟测试装置

技术介绍

油气田开发钻井过程中,钻具组合或钻杆与井壁接触,造成钻具和井壁之间摩擦阻力较大,使钻压传递过程中损耗增大、钻进效率降低;随着井眼水平段加长,出现脱压、粘连、丢失工具现象越来越多,从而大大限制了钻进速度,制约了水平段长度的延伸,因此如何减小阻力、实现快速钻进和提高井水平段长度已成为业界关注的焦点。而水力振荡器在水力的作用下,可以产生沿钻具组合或者钻杆轴线方向上的振动,该振动可有效的改变轴向荷载的转换、降低摩擦阻力,有效传递稳定的钻压,从而有效解决钻具与井壁之间的摩擦阻力,防止钻具脱压,提高钻进速度,特别是有螺杆的滑动钻进过程中,可保护钻头提高机械钻速和钻头的进尺,缩短钻井周期,减少钻头的起下钻次数及卡钻的风险。
水力振荡器由上接头所在的中心管与下接头所在的外筒组成。在工作时通过上接头与下接头接入钻井管柱中,利用从上接头方向流入的水流,使水力振荡器中心管与外筒产生轴向相对往复运动。该往复运动带动两端钻具轴向振动,达到减小与井壁摩擦阻力的效果。但是水力振荡器在振动的情况下产生的振动频率、振幅、振动力以及工具压耗是影响使用效果的关键参数,而且受到液体排量、密度、粘度、工具预受力情况等多种因素的影响。然而以上参数无法通过理论模型准确计算,更没有现成的测试评估装备与方法。

技术实现思路

本技术的目的在于提供一种用于模拟水力振荡器在井下预受力作用下的工作参数,为振动类井下专用工具类作业设计、现场开发调整工具结构参数及施工工艺提供依据的钻井用井下水力振荡器模拟测试装置。
本技术的另一目的是提供一种使用上述钻井用井下水力振荡器模拟测试装置模拟水力振荡器在井下预受力作用下的工作参数,以对其适用性进行检测的测试方法。
为解决上述技术问题,本技术技术方案为:
一种钻井用井下水力振荡器模拟测试装置,包括设置在一固定架上的导向系统、位移传感系统和循环给液测试系统,以及数据采集分析系统,所述导向系统设置在所述固定架前端为所述水力振荡器提供沿轴向往复运动动力源,所述位移传感系统设置在所述固定于所述固定架内的水力振荡器的上接头和外筒的侧壁上,测定在所述导向系统的推动作用下,水力振荡器的所述上接头和所述外筒之间的位移变化。
具体地,所述导向系统包括导向架、双作用手压泵、双作用液压缸、连杆和测力计,所述导向架设置在所述固定架的前端,所述双作用液压缸设置在所述导向架内并通过压力管a和压力管b与所述双作用手压泵连接,所述双作用液压缸一端通过固定销与所述导向架固定连接,另一端通过连接销与所述连杆一端连接,所述连杆的另一端为法兰结构,所述测力计通过多个小螺栓固定在所述法兰结构的端面上;
所述位移传感系统包括检测环、位移传感器、支撑环,所述检测环和所述支撑环分别设置在固定于所述固定架内的水力振荡器的上接头和外筒的侧壁上,在所述检测环和所述支撑环的下侧均设有分别与所述检测环和所述支撑环共面的钢板,所述位移传感器垂直设置在与所述支撑环的共面钢板上,使位移传感器在导向系统推动水力振荡器产生轴向往复运动中检测位移传感器自由端端部与所述检测环的共面钢板之间的位移变化;
所述固定架由两根平行结构的钢板围成,在所述固定架上设有多个安装孔,所述水力振荡器设置在所述固定架内并分别通过设置在固定架中部和后端端部的上卡箍和下卡箍固定在所述固定架内,所述上/卡箍和所述下/卡箍和所述导向架均通过所述固定架的安装孔连接固定;
所述循环给液测试系统包括导向法兰、前端压力传感器、弯接头、末端压力传感器、直接头、流量计、水泵和水罐,所述弯接头一端与所述水泵的出水口连接、另一端与水力振荡器的上接头连接且在所述弯接头的弯折处外侧设有与所述导向法兰连接的法兰孔,所述直接头一端与水力振荡器的外筒底端连接、另一端通过连接管路与所述流量计连接,所述流量计、所述水罐和所述水泵通过连接管路依次连接,在所述弯接头和直接头的侧壁上分别设有安装所述前端压力传感器和所述末端压力传感器的传感器孔;
进一步地,所述导向法兰一端为法兰结构、另一端为与所述弯接头的法兰孔相适应的弧形结构,所述导向法兰通过多个大螺栓固定在所述弯接头上,使所述导向法兰、连杆、所述弯接头的水平方向管路和水力振荡器设置在同一轴线上;其中,所述弯接头为90°;
进一步地,所述导向法兰和所述弯接头无缝对接同时,在导向法兰外壁和所述弯接头内壁接触处所述设有多个密封圈形成密封。
所述数据采集分析系统包括计算机和与所述计算机连接并收集在一防水集线器内的分别与所述测力计、前端压力传感器、位移传感器、末端压力传感器和流量计连接的信号传输电缆;所述测力计、前端压力传感器、位移传感器、末端压力传感器和流量计通过信号传输电缆将实时检测的数据回传到计算机中,进行数据存储和数据分析;
所述固定架由两根平行结构的钢板围成,在所述固定架上设有多个安装孔,所述水力振荡器设置在所述固定架内并分别通过设置在固定架中部和后端端部的上卡箍和下卡箍固定在所述固定架内,所述上卡箍和所述下卡箍和所述导向架均通过所述固定架的安装孔连接固定。
与现有技术相比,本技术的有益效果为:该钻井用井下水力振荡器模拟测试装置通过调整上、下卡箍的尺寸与间距,可适用于所有规格水力振荡器工具的检测实验,且实验过程不受水力振荡器内部工作原理的限制,为钻井专用工具的设计和现场应用提供依据;并且该钻井用井下水力振荡器模拟测试装置的测试方法可有效检测水力振荡器在不同排量水力驱动下的振动频率、振幅、振动推力以及压力损耗;同时可以通过双作用液压缸推力作用,模拟井下受压缩各种环境下的工作情况及振动参数;所有测试数据回传至数据采集系统的计算机中,实现实时监控与事后分析。
附图说明
图1为本技术的水力振荡器设置在钻井用井下水力振荡器模拟测试装置内的结构示意图;
图2为水力振荡器的外部结构示意图;
图3为本技术实施例2的位移-时间图像;
图4为本技术实施例2的推力-时间图像。
具体实施方式
下面结合附图及具体实施例对本技术做进一步的说明,但这些实施例绝非对本技术有任何限制。
实施例1
如图2所示为水力振荡器的外观结构示意图,如图所示,水力振荡器由上接头所在的中心管与下接头所在的外筒组成,其运动原理为通过上接头28与外筒29的下接头接入钻井管柱中,利用从上接头方向流入的水流,使水力振荡器中心管与外筒29产生轴向相对往复运动。
如图1所示,该种钻井用井下水力振荡器模拟测试装置,包括设置在一固定架19上的导向系统、位移传感系统和循环给液测试系统,以及数据采集分析系统,其中:
所述导向系统包括导向架1、双作用手压泵5、双作用液压缸13、连杆7和测力计9,所述导向架1设置在所述固定架19的前端,所述导向架包括与所述固定架19前端焊接为一体的连接部和设置在所述连接部前端的方形槽体结构,所述双作用液压缸13设置在所述导向架1内并通过压力管a和压力管b与所述双作用手压泵5连接,所述双作用液压缸13一端通过固定销2与所述导向架1固定连接,另一端通过连接销6与所述连杆7一端连接,所述连杆7的另一端为法兰结构,所述测力计9通过多个沿所述法本文档来自技高网
...

【技术保护点】
一种钻井用井下水力振荡器模拟测试装置,其特征在于,包括设置在一固定架(19)上的导向系统、位移传感系统和循环给液测试系统,以及数据采集分析系统,所述导向系统设置在所述固定架(19)前端为所述水力振荡器提供沿轴向往复运动动力源,所述位移传感系统设置在所述固定于所述固定架(19)内的水力振荡器的上接头(28)和外筒(29)的侧壁上,测定在所述导向系统的推动作用下,水力振荡器的所述上接头(28)和所述外筒(29)之间的位移变化。

【技术特征摘要】
1.一种钻井用井下水力振荡器模拟测试装置,其特征在于,包括设置在一固定架(19)上的导向系统、位移传感系统和循环给液测试系统,以及数据采集分析系统,所述导向系统设置在所述固定架(19)前端为所述水力振荡器提供沿轴向往复运动动力源,所述位移传感系统设置在所述固定于所述固定架(19)内的水力振荡器的上接头(28)和外筒(29)的侧壁上,测定在所述导向系统的推动作用下,水力振荡器的所述上接头(28)和所述外筒(29)之间的位移变化。
2.根据权利要求1所述的钻井用井下水力振荡器模拟测试装置,其特征在于,所述导向系统包括导向架(1)、双作用手压泵(5)、双作用液压缸(13)、连杆(7)和测力计(9),所述导向架(1)设置在所述固定架(19)的前端,所述双作用液压缸(13)设置在所述导向架(1)内并通过压力管a(3)和压力管b(4)与所述双作用手压泵(5)连接,所述双作用液压缸(13)一端通过固定销(2)与所述导向架(1)固定连接,另一端通过连接销(6)与所述连杆(7)一端连接,所述连杆(7)的另一端为法兰结构,所述测力计(9)通过多个小螺栓(8)固定在所述法兰结构的端面上。
3.根据权利要求2所述的钻井用井下水力振荡器模拟测试装置,其特征在于,所述位移传感系统包括检测环(20)、位移传感器(21)、支撑环(22),所述检测环(20)和所述支撑环(22)分别设置在固定于所述固定架(19)内的水力振荡器的上接头(28)和外筒(29)的侧壁上,在所述检测环(20)和所述支撑环(22)的下侧均设有分别与所述检测环(20)和所述支撑环(22)共面的钢板,所述位移传感器(21)垂直设置在与所述支撑环(22)的共面钢板上,使位移传感器(21)在导向系统推动水力振荡器产生轴向往复运动中检测位移传感器(21)自由端端部与所述检测环(20)的共面钢板之间的位移变化。
4.根据权利要求3所述的钻井用井下水力振荡器模拟测试装置,其特征在于,所述固定架(19)由两根平行结构的钢板围成,在所述固定架(19)上设有多个安装孔,所述水力振荡器设置在所述固定架(19)内并分别通过设置在固定架(19)中部和后端端部的上卡箍(23)和下卡箍(24)固定在所述固定架(19)内,所述上卡箍(23)和所述下卡箍(24)和所...

【专利技术属性】
技术研发人员:冯强张文华柳鹤吴欣袁于志强王瑶
申请(专利权)人:中国石油集团渤海钻探工程有限公司
类型:新型
国别省市:天津;12

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1