当前位置: 首页 > 专利查询>深圳大学专利>正文

高功率全光纤化近中红外超连续谱激光光源制造技术

技术编号:13416145 阅读:150 留言:0更新日期:2016-07-26 16:54
本实用新型专利技术适用于高功率中红外激光的产生领域,提供了一种高功率全光纤化近中红外超连续谱激光光源,包括:掺铥光纤种子激光器,用于产生掺铥超短脉冲激光;掺铥光纤放大器,用于将掺铥超短脉冲激光进行功率放大;中红外光纤,提供非线性介质,并作为中红外激光的传输介质;熔接点封装模块,用于保护所述石英光纤与所述中红外光纤的熔接点,并可对其进行散热;所述中红外光纤输出端置于所述熔接点封装模块外,经功率放大后的掺铥超短脉冲激光依次经过所述石英光纤与所述中红外光纤之后经输出端输出。所述的高功率全光纤化近中红外超连续谱激光光源可以提高整个系统的稳定性、实用性,且可以实现高功率输出。

【技术实现步骤摘要】

本技术属于高功率中红外激光的产生领域,尤其涉及高功率全光纤化近中红外超连续谱激光光源
技术介绍
2~5微米波段中红外激光可应用于民事、军事、科学研究等诸多领域。目前,实现2~5微米波段中红外激光主要为光学参量振荡器(OpticalParametricOscillation,OPO)和量子级联激光器。其中,对于OPO技术,即通过非线性频率转换的方法来逐步实现,使得整个系统设计复杂、体积庞大、稳定性差、电光转化效率较低(<3%),阻碍了此类中红外激光光源的广泛应用;量子级联激光器一般工作在连续模式,电光转换效率仅为15%-20%,工作中需要良好的散热处理,低电光转换效率、低输出功率、以及低的光束质量使其短期内无法实现高功率中红外单模激光输出。与之相比,高功率光纤激光器泵浦中红外非线性光纤产生的高功率中红外超连续谱激光源具有体积小、重量轻、效率高、可靠性好等优势。并且随着近年来2微米波段脉冲掺铥光纤激光器输出功率的提升,以及中红外氟化物、硫化物、碲化物光纤的发展,其输出功率、光谱范围逐步已可与此波段OPO相媲美;同时其高的转换效率、高的输出功率及宽光谱范围也都优于量子级联激光器。但是目前实现2~5微米中红外超连续谱光源所采用的非线性介质多为商品化的氟化物玻璃(ZrF4-BaF2-LaF3-AlF3-NaF,ZBLAN)光纤,其熔点约为300℃,而激光器尾纤为普通石英光纤,熔点约为1500℃,使得两者直接熔接变得比较困难。在2~5微米中红外超连续谱的产生过程中,激光器尾纤与中红外光纤的耦合方式多为透镜聚焦耦合及机械对接耦合。透镜耦合方式需要聚焦透镜及高精度调整架,鲁棒性较差,且中红外光纤端面极易损坏,实用性较差。机械对接耦合方式,则是采用高精度光纤夹具及调整架,使激光器尾纤与中红外光纤直接对光耦合,此种方式虽然不需要透镜,但对光纤夹具要求较高,同时直接对接需将光纤完全固定,同时需要对激光器尾纤及中红外光纤特殊处理(8°角切割或镀膜防止激光反射),无疑增加了操作的难度,同时高功率下光纤易受激光反冲力扰动,容易造成光纤端面损坏,不易长时间稳定运行,更是限制了其实用性。
技术实现思路
本技术所要解决的技术问题旨在提供一种全光纤化且可以实现高功率输出的近中红外超连续谱激光光源。本技术是这样实现的,一种高功率全光纤化近中红外超连续谱激光光源,包括:掺铥光纤种子激光器,用于产生掺铥超短脉冲激光;掺铥光纤放大器,用于将所述掺铥超短脉冲激光进行功率放大,其内的光纤为石英光纤;中红外光纤,用于产生近中红外超连续谱及作为传输介质,具有一输出端;熔接点封装模块,用于保护所述石英光纤与所述中红外光纤的熔接点,并对熔接点进行散热;所述中红外光纤输出端置于所述熔接点封装模块外,经功率放大后的掺铥超短脉冲激光依次经过所述石英光纤与所述中红外光纤后经所述中红外光纤的输出端进行输出。进一步地,所述高功率全光纤化近中红外超连续谱激光光源还包括反向光纤模场适配器,连接在所述熔接点封装模块与所述掺铥光纤放大器之间,用于将进行功率放大后的激光输出光纤与所述石英光纤进行匹配。进一步地,所述掺铥光纤放大器包括单模掺铥光纤放大器和大模面积掺铥光纤放大器,所述单模掺铥光纤放大器连接在所述掺铥光纤种子激光器与大模面积掺铥光纤放大器之间,将掺铥超短脉冲激光进行功率预放大;所述大模面积掺铥光纤放大器连接在所述单模掺铥光纤放大器与所述熔接点封装模块之间,将进行功率预放大后的掺铥超短脉冲激光进行功率放大。进一步地,所述高功率全光纤化激光光源还包括两个光纤耦合隔离器,其中一个光纤耦合隔离器连接在所述掺铥光纤种子激光器与所述单模掺铥光纤放大器之间,用于隔离所述单模掺铥光纤放大器的返回光;另一个光纤耦合隔离器连接在所述单模掺铥光纤放大器与所述熔接点封装模块之间,用于隔离所述大模面积掺铥光纤放大器的返回光。进一步地,所述高功率全光纤化激光光源还包括热沉,所述热沉置于所述熔接点封装模块与所述中红外光纤的下方,用于对所述熔接点封装模块及中红外光纤进行制冷。进一步地,所述中红外光纤的输出端经过8°角处理或为端帽。本技术与现有技术相比,有益效果在于:所述的高功率全光纤化近中红外超连续谱激光光源结合了稳定、紧凑的掺铥光纤种子激光器产生掺铥超短脉冲激光,以及石英光纤与中红外光纤的低损耗熔接耦合,并对熔接点进行封装保护,可以提高整个系统的紧凑性、稳定性、实用性,且可以实现高功率输出。附图说明图1是本技术高功率全光纤化近中红外超连续谱激光光源的结构示意图。具体实施方式为了使本技术的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本技术进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本技术,并不用于限定本技术。本技术的高功率全光纤化近中红外超连续谱激光光源为了实现整个系统的全光纤化,采用全光纤化超短脉冲掺铥光纤激光器10作为种子源,将反向光纤模场适配器30的输出光纤(即石英光纤)直接与中红外光纤50进行熔接,然后将熔接点封装并加以散热处理,可承受高功率,极大地提高了系统的稳定性、实用性,且可实现高功率输出。如图1所示,一种高功率全光纤化近中红外超连续谱激光光源,包括:掺铥光纤种子激光器10、掺铥光纤放大器20、中红外光纤50和熔接点封装模块40。掺铥光纤种子激光器10用于产生掺铥超短脉冲激光,该超短脉冲激光可以为皮秒量级或者飞秒量级的脉冲激光,掺铥光纤种子激光器10内的光纤为石英光纤。掺铥光纤种子激光器10为整个激光光源系统提供高质量、稳定紧凑的掺铥超短脉冲激光。掺铥光纤种子激光器10可以使用图示的谐振腔结构,但并不限于仅使用图示的结构。掺铥光纤放大器20用于将掺铥超短脉冲激光进行功率放大,掺铥光纤放大器20内的输出光纤为石英光纤。中红外光纤50作为中红外超连续谱的产生及传输介质,且具有中红外光纤的输出端501。熔接点封装模块40内具有石英光纤,用于保护石英光纤与中红外光纤50的熔接点,并对熔接点加以散热处理,然后进行封装,实现石英光纤与中红外光纤50的全光纤化低损耗耦合,使得熔接点封装模块40在增加稳定性的同时可以承受更高的功率输出。中红外光纤50输出端置于熔接点封装模块40外,经功率放大后的掺铥超短脉冲激光依次经过石英光纤与中红外光纤50后经中红外光纤50的输出端501进本文档来自技高网
...

【技术保护点】
一种高功率全光纤化近中红外超连续谱激光光源,其特征在于,包括:掺铥光纤种子激光器,用于产生掺铥超短脉冲激光;掺铥光纤放大器,用于将所述掺铥超短脉冲激光进行功率放大,其内的光纤为石英光纤;中红外光纤,用于产生近中红外超连续谱及作为传输介质,具有一输出端;熔接点封装模块,用于保护石英光纤与所述中红外光纤的熔接点,并对熔接点进行散热;所述中红外光纤的输出端置于所述熔接点封装模块外,经功率放大后的掺铥超短脉冲激光依次经过所述石英光纤与所述中红外光纤后经所述中红外光纤的输出端进行输出。

【技术特征摘要】
1.一种高功率全光纤化近中红外超连续谱激光光源,其特征在于,包括:
掺铥光纤种子激光器,用于产生掺铥超短脉冲激光;
掺铥光纤放大器,用于将所述掺铥超短脉冲激光进行功率放大,其内的光
纤为石英光纤;
中红外光纤,用于产生近中红外超连续谱及作为传输介质,具有一输出端;
熔接点封装模块,用于保护石英光纤与所述中红外光纤的熔接点,并对熔
接点进行散热;所述中红外光纤的输出端置于所述熔接点封装模块外,经功率
放大后的掺铥超短脉冲激光依次经过所述石英光纤与所述中红外光纤后经所述
中红外光纤的输出端进行输出。
2.根据权利要求1所述的高功率全光纤化近中红外超连续谱激光光源,其
特征在于,所述高功率全光纤化近中红外超连续谱激光光源还包括反向光纤模
场适配器,连接在所述熔接点封装模块与所述掺铥光纤放大器之间,用于将进
行功率放大后的激光输出光纤与石英光纤进行匹配。
3.根据权利要求1所述的高功率全光纤化近中红外超连续谱激光光源,其
特征在于,所述掺铥光纤放大器包括单模掺铥光纤放大器和大模面积掺铥光纤
放大器,所述单模掺铥光纤放大器连接在所述掺铥光纤种子激光器与大模面积<...

【专利技术属性】
技术研发人员:欧阳德钦阮双琛赵俊清郑志坚
申请(专利权)人:深圳大学
类型:新型
国别省市:广东;44

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1