【技术实现步骤摘要】
201610020821
【技术保护点】
一种基于概率神经网络的传统互感器状态监测方法,其特征在于,所述基于概率神经网络的传统互感器状态监测方法是:对传统互感器温度、传统互感器二次侧出线两接头温度、不同传统互感器进线的三条母线温度进行采集监测,对温度数据进行分析处理作为输入特征量输入概率神经网络分类模型;通过三条母线温度数据分析处理的输入特征量作为判断电力系统运行情况的参考特征量,用于排除当前电力系统运行情况对传统互感器运行的温度影响因素;通过上述输入特征量对概率神经网络分类模型进行训练、学习和分类,对传统互感器的温度状态特征量进行识别分类,实现对传统互感器故障的诊断,完成对传统互感器的状态监测。
【技术特征摘要】
1.一种基于概率神经网络的传统互感器状态监测方法,其特征在于,所述基于概率神经网络的传统互感器状态监测方法是:对传统互感器温度、传统互感器二次侧出线两接头温度、不同传统互感器进线的三条母线温度进行采集监测,对温度数据进行分析处理作为输入特征量输入概率神经网络分类模型;通过三条母线温度数据分析处理的输入特征量作为判断电力系统运行情况的参考特征量,用于排除当前电力系统运行情况对传统互感器运行的温度影响因素;通过上述输入特征量对概率神经网络分类模型进行训练、学习和分类,对传统互感器的温度状态特征量进行识别分类,实现对传统互感器故障的诊断,完成对传统互感器的状态监测。
2.根据权利要求1所述的一种基于概率神经网络的传统互感器状态监测方法,其特征在于,所述基于概率神经网络的传统互感器状态监测方法步骤如下:
S01:采集传统互感器温度T0、传统互感器二次侧出线两接头温度T1和T2、不同传统互感器进线的三条母线温度T3、T4和T5;
S02:对温度T0、T1、T2、T3、T4和T5进行...
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。