一种分时段考虑时空关联性的快速路交通状态预测方法技术

技术编号:13365232 阅读:187 留言:0更新日期:2016-07-18 19:12
本发明专利技术公开了一种分时段考虑时空关联性的快速路交通状态预测方法,首先利用有序聚类算法对流量及速度时间序列进行分析时段动态划分,在不打乱交通流参数时间顺序的前提下将全天划分为具有不同交通特征的分析时段;进而针对不同时段,选用多变量的向量自回归模型,综合考虑上下游交通流的时空关联性,对目标地点的流量或速度进行预测。本发明专利技术的动态时段划分为快速路交通状态短时预测提供了一种廉价简便但却能够显著提高效率的基础方法;时段划分后考虑时空关联性的向量自回归模型,与未考虑上下游交通流影响的传统方法相比,预测结果在精度上明显提高。

【技术实现步骤摘要】

本专利技术属于智能交通领域,可以应用于准确把握城市快速路交通流的时空关联性,分时段精确预测城市快速路短时交通流量及行驶速度。
技术介绍
ITS的快速发展使得城市快速路交通流检测信息日趋完备,然而由于交通状态的动态时变特性,实时数据并不能有效满足交通管理部门及出行者需求。快速路作为城市路网的主骨架,准确把握其交通流时变特性、预测其交通状态对于精细化交通管理、改善出行服务具有重要的理论研究价值与现实意义。交通状态短时预测作为ITS领域长期的研究热点,概括起来其建模方法主要包括历史均值法、时间序列法、Kalman滤波法、非参数回归法、神经元网络法等。然而,交通流的时空关联性及预测模型的特性决定了交通状态预测很难基于单一模型或方法解决,故预测过程中需要重点解决的问题是根据实际交通状况,考虑交通流的时空关联性,选择最适合的模型,提出最优的组合模型,并能够依据预测的效果对选择的模型进行判断和评价,以便及时改进。
技术实现思路
本专利技术的目的是为了解决上述问题,提出一种能够准确把握城市快速路交通流的时空关联性,分时段精确预测城市快速路短时交通流量及行驶速度的方法。本专利技术的一种分时段考虑时空关联性的快速路交通状态预测方法,包括下列步骤:1)确定与研究的城市快速路路段相邻的周围路网作为目标研究区域,采集目标研究区域内各路段在一定时段内(连续多天)的流量、速度数据作为样本数据,并对数据进行预处理;2)根据预处理后的各路段交通流量与速度数据,对快速路交通流的时间和空间分布特性进行相关性分析,初步确定与目标预测路段相关联的路段时空范围;3)以目标路段的流量和速度时间序列作为二维交通状态表征类,采用有序聚类算法,在不打乱交通状态时间序列顺序的前提下,计算有序样本进行分割时对应的误差函数E[c(k,m)];并根据误差函数曲线的斜率变化,确定流量和速度时序列的最优分割数k,将全天划分为多个具有典型交通特征的分析时段;4)针对各个分析时段,考虑目标地点的交通状态与上下游交通流的时空关联性,基于序列稳定性检测,构建一定滞后阶数、包含不同上下游流量与速度组合的多变量向量自回归模型;5)根据实时采集的交通流量与速度数据,采用目标路段分时段构建的多变量向量自回归模型,进行交通状态短时预测。本专利技术的优点在于:本专利技术提出的分时段考虑时空关联性的快速路交通状态预测方法相比以往各类短时交通预测模型,克服了预测变量单一、较少考虑交通流时空关联性、易受交通流随机波动影响等缺点,在动态时段划分的基础上,利用多变量向量自回归模型,进行同时考虑上下游交通状态综合影响的某一地点的流量和速度预测,预测精度显著提高。附图说明图1是本专利技术的方法流程图;图2是某路段二维交通状态分段数目k对应的误差函数曲线E[c(k,m)];图3是某路段基于有序聚类算法的二维交通状态动态时段划分。具体实施方式下面将结合附图和实施例对本专利技术作进一步的详细说明。本专利技术是一种分时段考虑时空关联性的快速路交通状态预测方法,流程如图1所示,包括以下几个步骤:(1)界定目标区域及相邻路段确定拟研究的城市快速路目标区域,并界定与目标路段相邻的周围路段,采用固定点线圈检测器获取目标区域内所有路段交通流量及速度时间序列数据,并对采集的数据进行预处理,根据各路段在一天中各个时刻交通状态数据95%置信度的置信区间,过滤剔除异常数据,对于缺失数据,根据动态交通流特征,采用相邻时段实测数据和历史趋势数据的加权平均值进行补足;(2)交通流时空分布相关性分析根据预处理后的各路段流量、速度时间序列数据,采用相关系数度量交通流时空分布的相关性,即各路段交通状态在典型工作日/非工作日(时间)的相似性与周期性,以及各路段之间(空间)交通状态的时滞性与相关性,初步确定与目标预测路段相关联的路段时空范围,即上游和下游分别有多少个路段与目标预测路段的交通状态相关;(3)交通状态分析时段动态划分将目标区域内待预测路段典型工作日/非工作日的流量和速度时间序列作为交通状态的表征类,采用有序聚类算法,即最优分割法,在不打乱原有数据顺序的基础上,将全天划分为具有典型交通流变化特征的时段,从而使针对各时段的短时预测更加准确。有序聚类算法的核心是分段后的各段之间数据有明显差异,而各段内数据具有一定的相似特征。具体分段方法如下:定义路段流量与速度的二维交通状态矩阵X:X=x1x2...xm=x11,x12x21,x22......xm1,xm2m×2]]>其中:x1,x2,…xm代表每隔一定时间间隔(如5分钟)路段流量与速度的二维交通状态向量,xi1代表流量时间序列,xi2代表速度时间序列。i=1,2,…,m,m为时间序列的个数,例如每天24个小时按照5分钟的时间间隔统计流量及速度数据,m=288。将二维交通状态矩阵X正规化处理,即矩阵X中的路段流量、速度的交通状态xij变换为:zij=(xij-min1≤j≤2{xij本文档来自技高网...
一种分时段考虑时空关联性的快速路交通状态预测方法

【技术保护点】
一种分时段考虑时空关联性的快速路交通状态预测方法,包括下列步骤:(1)界定目标区域及相邻路段确定快速路目标区域,界定与目标路段相邻的周围路段,获取目标区域内所有路段交通流量及速度时间序列数据,并对采集的数据进行预处理,根据各路段在一天中各个时刻交通状态数据95%置信度的置信区间,过滤剔除异常数据,对于缺失数据,根据动态交通流特征,采用相邻时段实测数据和历史趋势数据的加权平均值进行补足;(2)交通流时空分布相关性分析根据预处理后的各路段流量、速度时间序列数据,采用相关系数度量交通流时空分布的相关性,即各路段交通状态在典型工作日/非工作日的相似性与周期性,以及各路段之间交通状态的时滞性与相关性,确定与目标预测路段相关联的路段时空范围;(3)交通状态分析时段动态划分将目标区域内待预测路段典型工作日/非工作日的流量和速度时间序列作为交通状态的表征类,采用有序聚类算法,即最优分割法,将全天划分为具有典型交通流变化特征的时段;(4)构建交通状态向量自回归预测模型;在交通状态分析时段动态划分的基础上,针对各个划分出的时段,分别建立目标路段流量及速度的向量自回归预测模型;(5)分时段快速路交通状态短时预测在实时获取研究区域内所有路段流量及速度数据的基础上,根据交通状态分析时段动态划分的结果,采用分时段建立的流量及速度向量自回归模型,预测目标路段在未来一个或多个时段的交通状态。...

【技术特征摘要】
1.一种分时段考虑时空关联性的快速路交通状态预测方法,包括下列步骤:
(1)界定目标区域及相邻路段
确定快速路目标区域,界定与目标路段相邻的周围路段,获取目标区域内所有路段交通
流量及速度时间序列数据,并对采集的数据进行预处理,根据各路段在一天中各个时刻交通
状态数据95%置信度的置信区间,过滤剔除异常数据,对于缺失数据,根据动态交通流特征,
采用相邻时段实测数据和历史趋势数据的加权平均值进行补足;
(2)交通流时空分布相关性分析
根据预处理后的各路段流量、速度时间序列数据,采用相关系数度量交通流时空分布的
相关性,即各路段交通状态在典型工作日/非工作日的相似性与周期性,以及各路段之间交通
状态的时滞性与相关性,确定与目标预测路段相关联的路段时空范围;
(3)交通状态分析时段动态划分
将目标区域内待预测路段典型工作日/非工作日的流量和速度时间序列作为交通状态的
表征类,采用有序聚类算法,即最优分割法,将全天划分为具有典型交通流变化特征的时段;
(4)构建交通状态向量自回归预测...

【专利技术属性】
技术研发人员:陈鹏王云鹏鲁光泉丁川鹿应荣
申请(专利权)人:北京航空航天大学
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1