本发明专利技术涉及一种用于亚多普勒饱和吸收光谱的反射式集成装置,包括激光光源、分光镜、原子气室、部分反射镜、第一光电探测器和第二光电探测器,其中激光光源发出的激光通过分光镜分成两路,其中一路激光向外出射,另一路激光通过原子气室后到达部分反射镜,经部分反射镜的透射光由第二光电探测器接收,经部分反射镜的反射光沿原光路返回,依次经过原子气室、分光镜后由第一光电探测器接收,本发明专利技术显著增强亚多普勒饱和吸收光谱的稳定性和集成性,提高相关具体应用的精度、稳定度和集成度。
【技术实现步骤摘要】
本专利技术涉及激光器频率稳定领域,具体涉及一种用于亚多普勒饱和吸收光谱的反射式集成装置。
技术介绍
近年来,随着激光光源的不断发展,激光器已成为基础物理研究、精密测量和惯性导航等领域的重要组成部分。对于量子模拟、量子计算、原子钟、光钟、原子磁力仪、冷原子干涉陀螺仪、SERF陀螺仪和核磁共振陀螺仪等具体应用,频率稳定的激光光源都是核心部件。由于工作温度和工作电流的影响,自由运转的激光器的频率是不稳定的。利用原子的超精细能级结构光谱,将激光器的频率稳定在所需的共振跃迁线,是获得频率稳定的激光光源最为基本的手段。亚多普勒饱和吸收光谱就是上述具体应用中最为常用的原子超精细能级结构光谱之一。亚多普勒饱和吸收光谱是利用探测泵浦光在原子气体中产生的非线性烧孔而获得的原子吸收光谱。由于泵浦光和探测光的光强有很大差异,亚多普勒偏振光谱存在相当数量用于光强控制、分束和合束的光学元件。过多的光学元件,引入了更多的噪声,增加了稳频光谱的空间体积,降低了稳频光谱的稳定性和集成性,影响了相关具体应用的精度、稳定度和集成度。
技术实现思路
本专利技术的目的在于克服现有技术的上述缺陷,提供一种用于亚多普勒饱和吸收光谱的反射式集成装置,解决用于光强控制、分束和合束的光学元件所带来的问题,显著增强亚多普勒饱和吸收光谱的稳定性和集成性,提高相关具体应用的精度、稳定度和集成度。本专利技术的上述目的主要是通过如下技术方案予以实现的:一种用于亚多普勒饱和吸收光谱的反射式集成装置,包括激光光源、分光镜、原子气室、部分反射镜、第一光电探测器和第二光电探测器,其中第二光电探测器、部分反射镜、原子气室、分光镜和第一光电探测器依次排布,且第二光电探测器、反射镜、原子气室、分光镜和第一光电探测器的中心位于同一光轴,激光光源位于分光镜的一侧;所述激光光源(1)发出的激光通过分光镜分成两路,其中一路激光向外出射,另一路激光通过原子气室后到达部分反射镜,经部分反射镜的透射光由第二光电探测器接收,经部分反射镜的反射光沿原光路返回,依次经过原子气室、分光镜后由第一光电探测器接收。在上述用于亚多普勒饱和吸收光谱的反射式集成装置中,分光镜为非偏振分束器件,分光镜的分光比为1:9-1:99。在上述用于亚多普勒饱和吸收光谱的反射式集成装置中,部分反射镜的反射率为10%-90%。在上述用于亚多普勒饱和吸收光谱的反射式集成装置中,部分反射镜的反射率为45%-55%。在上述用于亚多普勒饱和吸收光谱的反射式集成装置中,原子气室内封装铷原子、铯原子、钠原子或钾原子,未加入缓冲气体,提供原子光谱的非线性工作介质。在上述用于亚多普勒饱和吸收光谱的反射式集成装置中,激光光源采用外腔式可调谐半导体激光器,输出偏振态为线偏振的激光或圆偏振的激光。本专利技术与现有技术相比具有如下有益效果:(1)、本专利技术创新设计了一种用于亚多普勒饱和吸收光谱的反射式集成装置,使用反射式光路代替传统亚多普勒饱和吸收光谱的分束合束光路,部分反射镜同时具有光强控制功能,大幅精简了光学元件,减少了噪声源,降低了稳频光谱的空间体积,显著提高了稳频光谱的稳定性和集成性。(2)、本专利技术反射式集成装置使用完全重合的泵浦光和探测光光路,增强了稳频光谱对光学元件振动噪声的抗扰能力,进一步提高了稳频光谱的稳定性。(3)、本专利技术反射式集成装置相比传统分束合束式光谱技术,稳定性提高了约3倍,集成度提高了约3倍。附图说明图1为本专利技术亚多普勒饱和吸收光谱的反射式集成装置原理图;图2为本专利技术用于亚多普勒饱和吸收光谱的反射式集成装置与传统分束合束式光谱装置的稳定性对比图。具体实施方式下面结合附图和具体实施例对本专利技术作进一步详细的描述:如图1所示为本专利技术亚多普勒饱和吸收光谱的反射式集成装置原理图,本专利技术反射式集成装置包括激光光源1、分光镜2、原子气室3、部分反射镜4、第一光电探测器5和第二光电探测器6,用于实现亚多普勒饱和吸收光谱及其探测。其中第二光电探测器6、反射镜4、原子气室3、分光镜2和第一光电探测器5依次排布,且第二光电探测器6、反射镜4、原子气室3、分光镜2和第一光电探测器5的中心位于同一光轴,即上述各器件的中心位于与光轴重合的同一直线上。激光光源1位于分光镜2的一侧。激光光源发出的激光通过分光镜2分成两路激光,其中一路激光向外出射,另一路激光通过原子气室3后到达部分反射镜4,经部分反射镜4的透射光由第二光电探测器6接收,经部分反射镜4的反射光沿原光路返回,依次经过原子气室3、分光镜2后由第一光电探测器5接收。上述分光镜2为非偏振分束器件,分光镜2的分光比为1:9-1:99。上述部分反射镜4的反射率为10%-90%,优选45%-55%。上述原子气室3内封装铷原子、铯原子、钠原子或钾原子,未加入缓冲气体,提供原子光谱的非线性工作介质。上述激光光源1采用外腔式可调谐半导体激光器,输出偏振态为线偏振的激光或圆偏振的激光。本专利技术是以分光镜2、原子气室3和部分反射镜4作为核心部件。激光光源1通过分光镜2,产生光谱分光和具体应用分光;光谱分光用于产生亚多普勒饱和吸收光谱所需的泵浦光和探测光,具体应用分光用于产生量子模拟、量子计算、原子钟、光钟、原子磁力仪、冷原子干涉陀螺仪、SERF陀螺仪和核磁共振陀螺仪等具体应用所需的光与原子相互作用。光谱分光作为泵浦光通过原子气室3,将布居在共振吸收线对应的超精细结构能级基态上的原子抽运掉,使得原子介质对激光的吸收减弱,这就是原子介质中的非线性烧孔。从原子气室3透射的泵浦光,一部分被部分反射镜4沿原光路反射,用于探测非线性烧孔,是探测光;一部分透过部分反射镜4,用于减除多普勒吸收包络,是参考光。从原子气室3透射的探测光,通过分光镜2后,被光电探测器5接收;参考光被光电探测器6接收。光电探测器5、6将亚多普勒饱和吸收光谱的光信号转化为稳频光谱的电信号,用于激光光源1的频率稳定。实施例1激光光源1采用外腔式可调谐半导体激光器,型号为TopticaDL100,中心波长780.24nm,线宽4MHz,输出功率101mW,激光偏振态为线偏振;分光镜2为直径10mm的厚石英玻璃片,分光比1:99;原子气室3为10mm3石英玻璃腔,内封装铷原子蒸汽,但未加入缓冲气体,压强10-7Torr,提供原子光谱的非线性工作介质;部分反射镜4直径10mm,反射率为50本文档来自技高网...
【技术保护点】
一种用于亚多普勒饱和吸收光谱的反射式集成装置,其特征在于:包括激光光源(1)、分光镜(2)、原子气室(3)、部分反射镜(4)、第一光电探测器(5)和第二光电探测器(6),其中第二光电探测器(6)、部分反射镜(4)、原子气室(3)、分光镜(2)和第一光电探测器(5)依次排布,且第二光电探测器(6)、反射镜(4)、原子气室(3)、分光镜(2)和第一光电探测器(5)的中心位于同一光轴,激光光源(1)位于分光镜(2)的一侧;所述激光光源(1)发出的激光通过分光镜(2)分成两路,其中一路激光向外出射,另一路激光通过原子气室(3)后到达部分反射镜(4),经部分反射镜(4)的透射光由第二光电探测器(6)接收,经部分反射镜(4)的反射光沿原光路返回,依次经过原子气室(3)、分光镜(2)后由第一光电探测器(5)接收。
【技术特征摘要】
1.一种用于亚多普勒饱和吸收光谱的反射式集成装置,其特征在于:
包括激光光源(1)、分光镜(2)、原子气室(3)、部分反射镜(4)、第一
光电探测器(5)和第二光电探测器(6),其中第二光电探测器(6)、部分
反射镜(4)、原子气室(3)、分光镜(2)和第一光电探测器(5)依次排
布,且第二光电探测器(6)、反射镜(4)、原子气室(3)、分光镜(2)和
第一光电探测器(5)的中心位于同一光轴,激光光源(1)位于分光镜(2)
的一侧;
所述激光光源(1)发出的激光通过分光镜(2)分成两路,其中一路
激光向外出射,另一路激光通过原子气室(3)后到达部分反射镜(4),经
部分反射镜(4)的透射光由第二光电探测器(6)接收,经部分反射镜(4)
的反射光沿原光路返回,依次经过原子气室(3)、分光镜(2)后由第一光
电探测器(5)接收。
2.根据权利要求1所述的一种用...
【专利技术属性】
技术研发人员:姜伯楠,张国万,李嘉华,成永杰,徐程,魏小刚,
申请(专利权)人:北京航天控制仪器研究所,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。