本发明专利技术公开一种基于金刚石NV‑色心的纳米级三维磁共振分子成像装置,包括:玻璃底座;激光器,设置在所述玻璃底座的内部,用于向外部发射激光;含有NV‑色心的金刚石,设置在所述玻璃底座的上表面所述激光器发出的激光直接照射至所述金刚石;微波脉冲器,用于向所述金刚石输入微波脉冲;显微镜物镜,使所述金刚石的NV‑色心发出的荧光通过所述显微镜物镜向外发射;单色滤光片,用于过滤所述金刚石的NV‑色心发出的荧光;纳米凸透镜,将过滤后的所述金刚石的NV‑色心发出的荧光进一步集中;分布式光学成像镜头,用以实现成像功能;封装设备,用于实现稳定温度、屏蔽电磁以及隔离保护的功能。
【技术实现步骤摘要】
本专利技术涉及核磁共振技术,特别涉及一种基于金刚石NV-色心芯片的纳米级三维磁共振成像装置,实现分子、蛋白和细胞水平的纳米级三维立体的超精密磁场成像。
技术介绍
现有的磁共振成像技术由于检测分辨率或检测灵敏度的限制,很难应用到微尺度成像领域中。物体的纳米级分辨率成像成为化学、物理学和生物医学的发展中的重要需求。由于单个质子的磁场十分微弱,在10nm的距离探测其磁场强度仅为6nT,利用什么样的感应器能与被测物如此接近且具有这么高的灵敏度是科学界的难题。近年来以钻石NV-色心为基础研发的弱磁场成像技术打开了新的局面。利用NV-色心中的电子自旋可实现微弱磁场的测量。在待测弱磁场与微波的共同作用下,NV-色心电子自旋达到共振,此时其荧光强度发生变化,实现磁场的测量。金刚石中的NV-色心具有良好的稳定性,在室温下进行工作,分辨率可达到纳米级。
技术实现思路
本专利技术的目的在于克服现有技术的不足,提供一种基于金刚石NV-色心能够实现三维磁共振分子成像的装置,使其具有高灵敏度、高分辨率等优点。为达上述目的,本专利技术提供一种基于金刚石NV-色心的纳米级三维磁共振分子成像装置,包括:玻璃底座,设置于所述成像装置的底部,用于承载其它元件;激光器,设置在所述玻璃底座的内部,用于向外部发射激光;含有NV-色心的金刚石,设置在所述玻璃底座的上表面,与所述激光器相对应,所述激光器发出的激光直接照射至所述金刚石;微波脉冲器,与所述金刚石相连,用于向所述金刚石输入微波脉冲;显微镜物镜,设置在所述玻璃底座的正上方,与所述金刚石相对应,使所述金刚石的NV-色心发出的荧光通过所述显微镜物镜向外发射;单色滤光片,设置在所述显微镜物镜的正上方,用于过滤所述金刚石的NV-色心发出的荧光;纳米凸透镜,设置在所述单色滤光片的正上方,将过滤后的所述金刚石的NV-色心发出的荧光进一步集中;分布式光学成像镜头,设置在所述纳米凸透镜的正上方,实现成像功能;封装设备,环形围绕在所述成像装置的四周,用于实现稳定温度、屏蔽电磁以及隔离保护的功能。根据本专利技术提出的成像装置,还包括:偏振磁场旋转轨道,同心设置在所述封装设备内部,所述偏振磁场旋转轨道为圆环形;偏置磁场,设置在所述偏振磁场旋转轨道上,能够沿着所述偏振磁场旋转轨道进行360°旋转运动。根据本专利技术提出的成像装置,所述单色滤光片允许波长为637nm的荧光通过。根据本专利技术提出的成像装置,所述激光器用于发出波长为532nm的脉冲激光。根据本专利技术提出的成像装置,所述脉冲微波器用于发射频率为2.87GHz的脉冲微波。与现有技术相比,本专利技术具有以下有益效果:本专利技术利用外界弱磁场对NV-电子自旋扰动从而改变塞曼劈裂效应,造成荧光强度改变,此时引入的微波射频强度在达到塞曼劈裂能量差值将导致荧光强度降到最低,从而实现从磁场信息到光学信息的转换,光学成像接收器将光学信号转化为电信号。不仅如此本专利技术利用外加偏置磁场的可旋转性,得到分子表面全方位信息,通过数据融合,最后测得分子三维立体图像。本系统将在化学、物理和生物医学等领域有着重要的应用价值。附图说明图1为本专利技术的三维磁共振分子成像装置的结构示意图。具体实施方式下面将结合本专利技术实施例中的附图,对本专利技术实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本专利技术一部分实施例,而不是全部的实施例。基于本专利技术中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本专利技术保护的范围。如图1所示,本专利技术提出的一种基于金刚石NV-色心纳米级三维磁共振分子成像装置包括:玻璃立方底座1、532nm激光器2、含有NV-色心的金刚石3、载样皿4、微波脉冲器5、显微镜物镜6、单色滤光片7、纳米凸透镜8、360°旋转偏置磁场9、分布式光学成像镜头10、偏振磁场旋转轨道和外部的封装设备12。532nm激光器2安装在玻璃立方底座1内,发出射频激光照射金刚石NV-色心3,微波脉冲5从侧面引入金刚石,载样品皿4中待测物弱磁场影像,NV-色心的荧光摄入显微镜物镜6并通过单色滤光片7,由纳米凸透镜8将光信号放大并由分布式光学成像镜头10进行采集。采集过程中偏置磁场9角度固定。随着一次采集完成,偏置磁场在轨道11内旋转一定角度,进行下一次采集,所得数据与之前采集信号融合,知道偏振磁场旋转360°采集完毕,最后获得待测物三维磁场分布图像。整套设备由外层包封装置12稳定隔离。其中,上述单色滤光片7允许波长为637nm的荧光通过,上述脉冲微波器5用于发射频率为2.87GHz的脉冲微波。本专利技术技术方案的原理是:实现物体三维表面为弱磁场成像。通过激光和微波脉冲将置于偏振磁场中的金刚石NV-色心产生荧光,根据待测物磁场引起的荧光强度变化,测定待测物磁场强度。由于NV-色心具有极高的灵敏度和分辨率,使得微弱磁场共振三维成像得以实现。综上所述,本专利技术提出的基于金刚石NV-色心的磁共振三维分子成像装置,实现了分子纳米级三维磁共振成像。本专利技术利用外界弱磁场对NV-电子自旋扰动从而改变塞曼劈裂效应,造成荧光强度改变,此时引入的微波射频强度在达到塞曼劈裂能量差值将导致荧光强度降到最低,从而实现从磁场信息到光学信息的转换,光学成像接收器将光学信号转化为电信号。不仅如此本专利技术利用外加偏置磁场的可旋转性,得到分子表面全方位信息,通过数据融合,最后测得分子三维立体图像。本领域普通技术人员可以理解:附图只是一个实施例的示意图,附图中的模块或流程并不一定是实施本专利技术所必须的。本领域普通技术人员可以理解:实施例中的装置中的模块可以按照实施例描述分布于实施例的装置中,也可以进行相应变化位于不同于本实施例的一个或多个装置中。上述实施例的模块可以合并为一个模块,也可以进一步拆分成多个子模块。最后应说明的是:以上实施例仅用以说明本专利技术的技术方案,而非对其限制;尽管参照前述实施例对本专利技术进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本专利技术实施例技术方案的精神和范围。本文档来自技高网...
【技术保护点】
一种基于金刚石NV‑色心的纳米级三维磁共振分子成像装置,其特征在于,包括:玻璃底座,设置于所述成像装置的底部,用于承载其它元件;激光器,设置在所述玻璃底座的内部,用于向外部发射激光;含有NV‑色心的金刚石,设置在所述玻璃底座的上表面,与所述激光器相对应,所述激光器发出的激光直接照射至所述金刚石;微波脉冲器,与所述金刚石相连,用于向所述金刚石输入微波脉冲;显微镜物镜,设置在所述玻璃底座的正上方,与所述金刚石相对应,使所述金刚石的NV‑色心发出的荧光通过所述显微镜物镜向外发射;单色滤光片,设置在所述显微镜物镜的正上方,用于过滤所述金刚石的NV‑色心发出的荧光;纳米凸透镜,设置在所述单色滤光片的正上方,将过滤后的所述金刚石的NV‑色心发出的荧光进一步集中;分布式光学成像镜头,设置在所述纳米凸透镜的正上方,实现成像功能;封装设备,环形围绕在所述成像装置的四周,用于实现稳定温度、屏蔽电磁以及隔离保护的功能。
【技术特征摘要】
1.一种基于金刚石NV-色心的纳米级三维磁共振分子成像装置,其特征在于,
包括:
玻璃底座,设置于所述成像装置的底部,用于承载其它元件;
激光器,设置在所述玻璃底座的内部,用于向外部发射激光;
含有NV-色心的金刚石,设置在所述玻璃底座的上表面,与所述激光器相对应,
所述激光器发出的激光直接照射至所述金刚石;
微波脉冲器,与所述金刚石相连,用于向所述金刚石输入微波脉冲;
显微镜物镜,设置在所述玻璃底座的正上方,与所述金刚石相对应,使所述金
刚石的NV-色心发出的荧光通过所述显微镜物镜向外发射;
单色滤光片,设置在所述显微镜物镜的正上方,用于过滤所述金刚石的NV-色
心发出的荧光;
纳米凸透镜,设置在所述单色滤光片的正上方,将过滤后的所述金刚石的NV-色心发出的荧光进一步集中;
分布...
【专利技术属性】
技术研发人员:申宝忠,
申请(专利权)人:哈尔滨医科大学,
类型:发明
国别省市:黑龙江;23
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。