一种生长大尺寸低缺陷碳化硅单晶和晶片的方法技术

技术编号:13172401 阅读:57 留言:0更新日期:2016-05-10 15:23
本发明专利技术公开了一种生长大尺寸低缺陷碳化硅单晶和晶片的方法,解决了大直径SiC晶体中的位错缺陷的难题。步骤为:使用具有较多缺陷或较少缺陷且基本平行于(0001)面的大直径SiC晶片作为籽晶,生长出SiC晶锭,将晶锭加工出偏角最大的晶片作为籽晶,重复直至晶锭生长面基本平行于(11-20)面或(1-100)面,在该面重复数次后按相反步骤使得晶锭生长面基本平行于(0001)面,在此期间可加工出所需偏角SiC晶片。保证了大直径、低缺陷密度SiC晶片生长的连续。

【技术实现步骤摘要】

本专利技术提供一种制备低缺陷密度的SiC单晶及其加工出SiC晶片的方法。
技术介绍
碳化硅(SiC)是第三代宽带隙半导体材料,具有宽禁带、高热导率、高电子饱和迀移速率、高击穿电场等性质,被认为是制造光电子器件、高频大功率器件、高温电子器件理想的半导体材料。常用SiC多为α相即(4H、6H),其带隙较宽,可用于大功率电子器件;SiC生长使用较多的为(0001)面或(0001)面偏〈11-20〉方向0-8度偏角,以此晶面生长,根据晶体生长理论,SiC单晶(0001)面生长属于螺位错机制生长,生长表面存在的微管、位错等缺陷提供了晶体生长的台阶源。晶体内缺陷多继承于籽晶,即使生长温场在理想的情况下,晶体内部缺陷相对籽晶不会有较大的增殖,但无法降低位错密度。位错表现为SiC晶片中的线缺陷,外延生长时位错会延伸到外延层内降低器件的成品率及生产效率,使得SiC单晶衬底的有效使用面积减小,增加了SiC衬底的使用成本。SiC采用{11-20}面和{1-100}面生长可有效减少微管和位错,这是由于这些晶面的SiC生长机理和{0001}面不同,无生长螺旋和台阶。以此,微管和位错密度可有效降低,得到了非专利文献I的证实。论文仅研究了不同生长面对缺陷的影响,且晶片尺寸在I英寸以下,无实际应用。非专利文献2命名了RAF(RepeatedΑ-Face)工艺,其中a面为{11-20},m面为{1-100},论文提出了一种生长低位错密度、高质量的晶体生长方法,通过先m-a-m面生长(I次或多次)即重复a面生长,最后c面生长,减少微管及位错。并通过腐蚀坑和X射线形貌图进行了验证。通过该方法生长的最佳晶体的腐蚀坑密度比传统方法低3个数量级。同样证实了非专利文献I的结论,但受制于PVT法生长出的晶体厚度多在40_以下,这种方法仅限于I英寸以下的晶体。而实际生产中所用SiC晶片尺寸在4英寸以上,因此无法用于减少大直径SiC晶体中的位错缺陷。
技术实现思路
本专利技术提供了,解决了大直径SiC晶体中的位错缺陷的难题。本专利技术是通过以下技术方案解决以上技术问题的: ,包括以下步骤: 1.使用市场主流的{0001}面或{0001}面偏〈11-20〉方向0、4度偏角SiC晶片作为生长的籽晶,特别地,对其缺陷无特别要求,较多缺陷和较少缺陷皆可,此外,籽晶直径必须为所需晶片直径再加上0.5到I英寸。以此籽晶通过PVT法生长出SiC晶体; 2.从生长出的SiC晶体切割出晶片,特别地,根据晶体厚度,在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向〈11-20〉方向旋转,切出偏〈11-20〉方向大偏角的SiC晶片作为下步生长步骤的籽晶。同样地,可在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向〈1-100〉方向旋转,切出偏〈1-100〉方向大偏角的SiC晶片作为下步生长步骤的籽晶。特别地,籽晶厚度不小于1_,可减少应力导致的位错产生; 3.将步骤2中切割出的晶片加工为籽晶,生长出SiC晶体; 4.将上一步所得SiC晶体切割,特别地,根据步骤2中的旋转方向,根据晶体厚度,在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向步骤2中的旋转方向旋转,切出偏步骤2中的旋转方向大偏角的SiC晶片作为下步生长步骤的籽晶; 5.将上一步中切割出的晶片加工为籽晶,生长出SiC晶体; 6.重复步骤4、5,特别地,直至SiC晶体生长面旋转至{11-20}面或{1-100}面; 7.将上一步所得晶体按其生长面切割晶片并加工,将加工出的晶片作为籽晶生长SiC晶体。特别地,选出1-2片晶片测试,将晶片使用熔融KOH腐蚀并用显微镜观察; 8.重复步骤7,特别地,将晶片使用熔融KOH腐蚀并用显微镜观察。直至腐蚀晶片经观察无微管且位错密度小于102每平方厘米; 9.将上步所得SiC晶片作为籽晶生长SiC晶体; 10.从生长出的SiC晶体切割出晶片,特别地,根据晶体厚度,在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向〈0001 >方向旋转,切出偏〈0001 >方向大偏角的SiC晶片作为下步生长步骤的籽晶; 11.重复步骤9、10,直至晶体生长面平行于{0001}面,特别地将晶体加工为所需直径晶片,此时可得到微管密度小于0.5个每平方厘米、位错密度小于103个每平方厘米的SiC晶片。此专利技术的另一步骤在第10步不同,特别地,根据晶体厚度和此时的生长面方向,在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向与它垂直的〈11-20〉方向或〈1-100〉方向旋转,切出偏〈11-20〉方向或〈1-100〉方向大偏角的SiC晶片作为下步生长步骤的籽晶。重复4-11步即可。实施该方法前,晶片的微管密度可达到1-10个每平方厘米,位错密度在104-105个每平方厘米,通过本专利技术方法,可得到微管密度小于0.5个每平方厘米、位错密度小于103个每平方厘米的SiC晶片。通过不同的旋转方向,完成步骤8之后,可获得SiC晶体生长面为{11-20}面和{1-100}面的SiC晶片,该尺寸SiC籽晶之后无需再重复步骤8之前的生长,可直接从重复步骤8开始,保证了大直径、低缺陷密度SiC晶片生长的连续,同时无需再购买SiC籽晶。【附图说明】图1是本专利技术的物理气相传输法生长SiC晶体的生长腔体结构示意图; 图2为本专利技术第二步的切割剖面示意; 图3是本专利技术的切割籽晶生长剖面图。【具体实施方式】下面结合附图对本专利技术进行详细说明: ,包括以下步骤: 1.使用市场主流的{0001}面或{0001}面偏〈11-20〉方向0、4度偏角SiC晶片作为生长的籽晶,特别地,对其缺陷无特别要求,较多缺陷和较少缺陷皆可,(市场上购买的SiC晶片的级别由其缺陷多少确定,级别越高,价格越高)。此外,籽晶直径必须为所需晶片直径再加上0.5到I英寸(由于生长过程中晶体边缘径向温梯较大以及内衬边缘的干扰,晶体边缘质量较差,要得到高质量的晶体和晶片就需要在加工过程去除边缘质量差的部分,根据晶体尺寸不同选择0.5到I英寸,所需晶体尺寸越大,那么籽晶的尺寸就需要相应的增加越多)。以此籽晶通过PVT法生长出SiC晶体; 2.从生长出的SiC晶体切割出晶片,特别地,根据晶体厚度,在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向〈11-20当前第1页1 2 本文档来自技高网
...

【技术保护点】
一种生长大尺寸低缺陷碳化硅单晶和晶片的方法,包括以下步骤:(1)使用市场主流的{0001}面或{0001}面偏<11‑20>方向0、4度偏角SiC晶片作为生长的籽晶,特别地,对其缺陷无特别要求,较多缺陷和较少缺陷皆可,此外,籽晶直径必须为所需晶片直径再加上0.5到1英寸,以此籽晶通过PVT法生长出SiC晶体;(2)从生长出的SiC晶体切割出晶片,特别地,根据晶体厚度,在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向<11‑20>方向旋转,切出偏<11‑20>方向大偏角的SiC晶片作为下步生长步骤的籽晶,同样地,可在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向<1‑100>方向旋转,切出偏<1‑100>方向大偏角的SiC晶片作为下步生长步骤的籽晶,特别地,籽晶厚度不小于1mm,可减少应力导致的位错产生;(3)将步骤(2)中切割出的晶片加工为籽晶,生长出SiC晶体;(4)将上一步所得SiC晶体切割,特别地,根据步骤(2)中的旋转方向,根据晶体厚度,在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向步骤(2)中的旋转方向旋转,切出偏步骤(2)中的旋转方向大偏角的SiC晶片作为下步生长步骤的籽晶;(5)将上一步中切割出的晶片加工为籽晶,生长出SiC晶体;(6)重复步骤(4)和步骤(5),特别地,直至SiC晶体生长面旋转至{11‑20}面或{1‑100}面;(7)将上一步所得晶体按其生长面切割晶片并加工,将加工出的晶片作为籽晶生长SiC晶体,特别地,选出1‑2片晶片测试,将晶片使用熔融KOH腐蚀并用显微镜观察;(8)重复步骤(7),特别地,将晶片使用熔融KOH腐蚀并用显微镜观察,直至腐蚀晶片经观察无微管且位错密度小于102每平方厘米;(9)将上步所得SiC晶片作为籽晶生长SiC晶体;(10)从生长出的SiC晶体切割出晶片,特别地,根据晶体厚度,在保证切出晶片直径不小于籽晶的条件下尽可能将晶体生长面向<0001>方向旋转,切出偏<0001>方向大偏角的SiC晶片作为下步生长步骤的籽晶;(11)重复步骤(9)和步骤(10),直至晶体生长面平行于{0001}面,特别地将晶体加工为所需直径晶片,此时可得到微管密度小于0.5个每平方厘米、位错密度小于103个每平方厘米的SiC晶片。...

【技术特征摘要】

【专利技术属性】
技术研发人员:戴鑫王英民李斌毛开礼王利忠马康夫徐伟周立平何超侯晓蕊田牧
申请(专利权)人:中国电子科技集团公司第二研究所
类型:发明
国别省市:山西;14

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1