本发明专利技术涉及一种基于信道多径时延差的主用户仿真攻击检测方法。现有方法中当PUE用户可以得到PU的先验信息并且具有重配置能力时,检测效率会大大下降。本发明专利技术通过所述的方法进行信道估计得到信道的小尺度衰落特征,并根据该特征采用二元假设检测的方法实现主用户仿真攻击的检测。具体是根据固定场景下信道的多径衰落模型,认知无线电用户利用主用户的前导码信息对接收信号和同步序列进行互相关运算计算得到信道的多径时延,然后选择多径幅值最大的两条径的时延差作为二元假设检验对象做出判决。本发明专利技术方法只须获得主用户的前导码信息,无需信道背景噪声功率,且在仿真主用户成功模仿主用户的大尺度和中尺度衰落特征时可以正常工作。
【技术实现步骤摘要】
本专利技术专利属于认知无线电安全领域,设及一种在能量检测和方差检测失效的情 况下,通过信道小尺度衰落特征来检测主用户仿真攻击的方法。
技术介绍
认知无线电网络(Cognitive Radio化twork,CRN)可W有效提高频谱资源利用 率,缓解当前日益严重的频谱资源紧张问题。它的工作原理是,在不干扰该频段内授权用户 即主用户(Prima巧化er,PU)正常工作的条件下,感知用户(Seconda巧化er,SU)通过频谱 感知技术获取"频谱空桐"即空闲频谱信息并伺机接入运些频谱空桐,从而和主用户共享频 谱资源。但是运种工作机制也为CRN引入了一系列新的安全问题。 主用户仿真攻击(PrimaiT User Emulation At1:ack,P肥A)是其中一种Denial of Service(Dos)攻击,是CRN中一种巨大的潜在危机。主用户仿真用户(PUE)通过模仿主用户 的信号特征,使正常工作的SU误认为当前频段正在被使用,从而达到独占空闲频谱资源或 不让其他SU接入空闲频谱的目的,严重破坏了CRN的正常工作。 目前已有的检测PUEA的方法主要有发射机地理位置检测化ocation detection), 能量检测化nergy Detection)、信道特征检测(Qiannel Qiaracteristics Detection)、合 作检测(Cooperative Detection)和指纹检测(Finge;rp;rint Detection)。在PU发射机地理 位置是先验知识的情况下,基于地理位置的检测法可W通过距离比值检测法、距离差值检 测法、接收信号强度检测法等方法检测发射源的地理位置,从而判定是否存在频谱空桐,运 种方法在PU和SU的距离较远时具有较好的效果。基于能量检测的方法具有计算复杂度低、 易于实现的优点,如基于Fenton近似法和马尔可夫不等式的能量检测法,但是运种方法容 易受到PUEA的攻击,当主用户仿真用户(PUE)在攻击中对发射功率进行调整时会大大降低 防御性能。信道特征检测根据PU发射机和PUE发射机到SU之间的信道特征不同的原理识别 接收信号,如计算接收信号的方差可W得到对数正态阴影衰落的信道特征,运种方法的优 点是对噪声不敏感,缺点是实现复杂度高且检测时间较长。合作检测是基于单个SU的检测 基础,通过合作的方式提升整体性能和降低单个用户检测的不稳定性,但是容易带来负面 效果如感知数据错误化攻击。指纹检测则通过寻找主用户信号中难W被模仿的特征如载波 频率,相位偏移等特征作为检测对象并通过机器学习的方法进行训练和分类,但在主用户 信号特征已知的情况下容易被P肥模仿。[000引上述检测方法主要是通过检测发射机特征和信道特征(信道的大尺度和中尺度衰 落特征)实现的。在基于TV网络的CRN模型中,数字电视地面广播传输系统(digital television terrestrial multimedia broadcasting,DTMB)的信号结构、调制方式和地理 位置都可W作为检测的先验信息,但具备感知能力的主用户仿真用户也能够精确模仿W上 特征,在运种情况下,我们需要寻找一种新的检测方法来识另化UEA。
技术实现思路
本专利技术针对现有技术的不足,提供基于信道多径时延差的主用户仿真攻击检测方 法。通过该方法对固定场景下基于TV网络的CRN,当已有的通过发射机特征或信道特征(信 道的大尺度和中尺度衰落特征)实现P肥A检测的方法失效的情况下,建立一种系统模型,实 现基于信道小尺度衰落特征的PUEA检测方法。 本专利技术所述方法在DTMB前导码信息已知的情况下,通过估计接收信号所经历多径 信道的固有参数即多径时延差来识别主用户信号和主用户仿真信号。本专利技术具有运算开销 低,识别时间短和对噪声敏感度不高的特点,且所识别参数无法被PUE模仿,检测概率高,在 基于TV网络的CRN中有良好的应用前景。 为了实现上述目的,本专利技术所采用的技术方案的具体步骤为: 步骤1:在W数字电视地面广播传输系统为主用户的认知无线电网络中,SU在PU工 作时,通过信道多径时延差估计方法估计得到多径幅值最大径和第二径之间的时延差,并 将其作为判决先验信息,然后根据虚警概率Pfp要求设定判决口限值S,具体过程如下:所述 的SU为感知用户,PU为用户; (I)SUW频率fs对当前频谱中的工作信号进行采样,得至暇收信号为y(n),y(n) = s(n)*h(n)+w(n); 其中s(n)表示发射信号序列,发射信号每个数据帖由长度为Lpn的帖头序列PN(n) 和长度为Ld的帖体序列d(n)两部分组成,PN(n)包括长度为Lpre的前同步符号序列、长度为Lm 的循环扩展9阶m序列和长度为LpDSt的后同步符号序列;h(n)表示多径信道响应;w(n)表示 信道噪声;*表示线性卷积。 (2)S诉良据PU的前导码信息在接收端本地生成与发射信号m序列相同的序列C(n); C(n)的自相关特性如下: 其中Rcc(n)表示C(n)的自相关值:-表示C(n似Lm为周期扩展得到的 循环序列。 将C(n)与y(n)进行线性互相关求值,得到C(n)与y(n)的互相关值RyG(n),计算如 下: 巧点(灼)*知的'+'休'的(巧) ='、'(《)* A(")? C(W) + vv(/''')?C(n) 二 'y (") ? C(rt) * + u''(") 5 其中矮表示相关运算,(n)表示w(n)和C(n)的互相关值。 由发射信号的数据帖结构得到s(n)和C(n)的线性互相关值Rsc(n): ?/?、(' (" ) = 's' (") ? C (")二尸'V ( ") 0 C (") + c/ (") ? C (") 。 '、 。 /、 =巧/,('(") +巧北似 . Rsc(n)由两部分组成,第一部分是前导码序列PN(n)和m序列的互相关值Rpc(n),第 二部分是数据帖信号d(n)和m序列的互相关值RdG(n)。根据C(n)的自相关特性,Rpe(n)的计算结果如下:[002引贝ljRpc(n+Lpre)=说(n)+I(n) ,n = -Lpre,. . . ,Lpost;其中,G为中间系数,G = RpC(Lpre); S (n)为冲激函数;I (n)为RpC(n似冲激函数形式 0, ? = 0 表示时的附加序列,/(") = <巧(…正)旅e ;[002引当接收端采样率足够大时,Ryc(n)表示为: 其中L表示多径数目,hk和Tk分别表示第k个多径分量的复增益和附加时延。 (3)当信道最大多径时延差小于后同步符号序列持续时间TpDSt时,计算出多径信 道每条径的幅值,其中1。。3* = 14>。3瓜,1'康示信号帖的单位符号时 间长度;由此寻找RyC ( n )在内的互相关峰值,每个峰值所在的时间点对应该 径的相对多径时延。 (4)对(3)中获得的峰值点进行排序算法处理,找到幅值最大的两条径的时间点, 运两个时间点即对应多径幅值最大两径的相对多径时延,计算两者的时延差Atpu。 (5)重复W上估计过程,计算统计平均值,其中A片U表示第i次的 多径时延差估计值,N为估计次数。 (6)根据预先设定的虚警概率P本文档来自技高网...
【技术保护点】
基于信道多径时延差的主用户仿真攻击检测方法,其特征在于该方法包括以下步骤:步骤1:在以数字电视地面广播传输系统为主用户的认知无线电网络中,SU在PU工作时,通过信道多径时延差估计方法估计得到多径幅值最大径和第二径之间的时延差,并将其作为判决先验信息,然后根据虚警概率PFP要求设定判决门限值δ:所述的SU为感知用户,PU为用户;步骤2:SU在未知用户工作时,采集接收信号y(n);通过步骤1中的信道多径时延差估计方法计算得到多径幅值最大径和第二径之间的时延差,重复估计N次,得到统计平均值步骤3:SU通过构建二元假设检验,判断接收到的信号来自PU还是PUE,PUE为主用户仿真用户;SU构建二元假设检验如下:根据步骤1得到的判决门限值δ和步骤2得到的多径时延差SU通过以下准则做出判决:
【技术特征摘要】
【专利技术属性】
技术研发人员:陈惠芳,谢磊,马向荣,
申请(专利权)人:浙江大学,
类型:发明
国别省市:浙江;33
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。