本实用新型专利技术属于药物给药装置产品技术领域。具体公开一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括输液容器及与药液输送装置,在对应于肿瘤区域的体表外设有磁场发生装置和生物电感应器;还包括控制装置;所述磁场发生装置上连接有磁场控制装置;所述药液输送装置上连接有流速控制器,所述控制装置分别与生物电感应器、磁场控制装置和流速控制器对应连接。该靶向给药装置能减少磁性纳米粒子抗肿瘤药物的流动,能较好地将药物集中控制在肿瘤区域内,使得肿瘤区域的药物浓度较高,药用效果好,同时依据肿瘤区域组织的生物电信号反馈控制磁场强度和药液流量,提高了性纳米粒子药物治疗的安全,利于肿瘤病患的身体恢复,也减少药物对人体其他器官不必要的伤害。
【技术实现步骤摘要】
本技术属于药物给药装置产品
,特别涉及一种抗肿瘤磁性纳米粒子药物的靶向给药装置。
技术介绍
纳米粒子是指粒度在1至100nm之间的粒子(纳米粒子又称超细微粒)。属于胶体粒子大小的范畴。它们处于原子簇和宏观物体之间的过度区,处于微观体系和宏观体系之间,是由数目不多的原子或分子组成的集团,因此它们既非典型的微观系统亦非典型的宏观系统。可以预见,纳米粒子应具有一些新异的物理化学特性。纳米粒子区别于宏观物体结构的特点是,它表面积占很大比重,而表面原子既无长程序又无短程序的非晶层。可以认为纳米粒子表面原子的状态更接近气态,而粒子内部的原子可能呈有序的排列,即使如此,由于粒径小,表面曲率大,内部产生很高的Gilibs压力,能导致内部结构的某种变形。 纳米材料在医学和生物工程也有许多应用,已成功开发了以纳米磁性材料为药物载体的靶向药物,称为“生物导弹”。即在磁性纳米粒子包敷的蛋白质表面携带药物,如图1所示,在磁性纳米粒子10的表面携带抗肿瘤药物20,如平阳霉素,通过物理或共价键结合的方式结合成磁性纳米粒子抗肿瘤药物30,然后将该磁性纳米粒子抗肿瘤药物20通过血管注射或瘤腔注射的方式进入人体病变组织,可减少肝、脾、肾等所受由于药物产生的副作用,但是瘤腔注射或血管灌注方式进入病灶区的药物,可再吸收进入血液循环,特别是血运丰富的病灶,如血管肉瘤、恶性黑色素瘤、动脉畸形(蔓状血管瘤)和大型静脉畸形,病灶区血流速度快,药物进入后在病灶区组织的停留时间短暂,药物浓度较低,药用效果较差,影响肿瘤病患的疗效,此外,进入血液循环的药物增加人体组织器官的损伤,因此,研发一种能将抗肿瘤磁性纳米粒子药物集中的控制在肿瘤区域的靶向装置迫在眉睫。
技术实现思路
本技术的目的是克服现有技术的不足,提供一种抗肿瘤磁性纳米粒子药物的靶向给药装置,该靶向给药装置能减少磁性纳米粒子药物的流动,能较好地将药物集中控制在肿瘤区域内,使得肿瘤区域的药物浓度较高,药用效果好,利于肿瘤病患的身体恢复,也减少药物对人体组织器官不必要的伤害。 为了克服上述技术目的,本技术是按以下技术方案实现的: 本技术所述的一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括用于盛装有抗肿 瘤磁性纳米粒子药物的输液容器及与输液容器相连接的输送抗肿瘤磁性纳米粒子药物的药液输送装置,在对应于肿瘤区域的体表外设有能将抗肿瘤磁性纳米粒子药物产生磁吸附作用的磁场发生装置和感应肿瘤区域活体组织对磁力刺激反应的生物电感应器;还包括设有接受和分析生物电感应器信号以及依据生物电感应器信号总控所需磁场强度、输液速度和液体流量的控制装置;所述磁场发生装置上连接有控制磁场强度的磁场控制装置;所述药液输送装置上连接有控制其流速的流速控制器,所述控制装置分别与生物电感应器、磁场控制装置和流速控制器对应连接。 作为上述技术的进一步改进,所述生物电感应器包括放置于对应肿瘤区域的治疗区域表面的表面电极或针状电极、生物电放大器和信号处理系统,所述表面电极或针状电极将探测到治疗区域组织对磁场力和磁性纳米抗肿瘤药物刺激的生物电反应,经过生物放大器的生物电放大及信号处理系统的信号分析处理,传送给控制装置。 在本技术中,所述磁场发生装置可以有以下两种形式: 第一种,所述磁场发生装置为交流线圈形成的旋转磁场,其通过固定件固定在对应于肿瘤区域的体表外,且所述磁场发生装置上连接有控制磁场强度和磁场转速的磁场控制装置,通过磁场控制装置能有效地控制磁场强度和磁场转速。 第二种,所述磁场发生装置为若干排布的磁性材料,所述磁性材料通过医用敷料或胶布粘贴在对应于肿瘤区域的体表外位置,所述磁性材料为磁铁石,通过调节磁铁石的数量用于控制所述磁性装置的磁性大小;此外,为了具有较好的透气效果,所述磁性材料和医用敷料或胶布之间充填有医用透气材料。 与现有技术相比,本技术的有益效果是: (1)本技术通过对应于肿瘤区域体表位置所述的磁场发生装置,将磁性纳米抗肿瘤药物主要的集中在肿瘤区域,加大肿瘤区域的抗肿瘤药物的浓度,减少肿瘤药物再吸收进入血液循环,更能针对性的给药,其药用效果好,且能减少药物对人体其他器官的伤害; (2)本技术还可设有磁场控制装置,来控制磁场的强度,对于肿瘤位于距体表较深的位置,可提高磁场强度,相反则降低其强度,可控性好,易于人体的健康。 (3)本技术还可设有生物电感应器,接受治疗区域组织对磁场力和磁性纳米抗肿瘤药物刺激的生物电反应,评价两者对肿瘤区域组织的影响范围和强度,反馈调节磁场强度和药物用量,有利于增加治疗的精确性,减少并发症和提高医疗安全; (4)本技术特别适用于血运丰富的良恶性肿瘤,通过磁力增加磁性纳米抗肿瘤药物在病灶区域的停留时间,为目前治疗效果低下的血管肉瘤、恶性黑色素瘤、动脉畸形(蔓状血管瘤)和大型静脉畸形等患者带来新的治疗希望。 附图说明下面结合附图和具体实施例对本技术做详细的说明: 图1是磁性纳米粒子与抗肿瘤药物结合过程示意图; 图2是本技术所述的磁性纳米粒子抗肿瘤药物的靶向给药装置结构示意图; 图3是实施例一所述的生物电感受器结构及其连接示意图; 图4是实施例一所述的磁场发生装置结构示意图; 图5是磁性纳米抗肿瘤药物治疗原理图; 图6是实施例二所述的磁场发生装置结构示意图。 具体实施方式实施例一: 如图2所示,本技术所述的一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括用于盛装有磁性纳米粒子抗肿瘤药物的输液容器1及与输液容器1相连接的输送磁性纳米粒子抗肿瘤药物的药液输送装置2,在对应于肿瘤区域的体表外能将抗肿瘤磁性纳米粒子药物产生磁吸附作用的磁场发生装置3和感应肿瘤区域活体组织对磁力刺激反应的生物电感应器4;还包括设有接受和分析生物电感应器4信号以及依据生物电感应器4信号总控所需磁场强度、输液速度和液体流量的控制装置5;所述磁场发生装置3上连接有控制磁场强度的磁场控制装置6;所述药液输送装置3上连接有控制其流速的流速控制器7,所述控制装置5分别与生物电感应器4、磁场控制装置6和流速控制器7对应连接。 如图3所示,所述生物电感应器4包括放置于对应肿瘤区域的治疗区域表面的表面电极41或针状电极42、生物电放大器和信号处理系统43,所述生物电放大器包括相互连接的前置放大器44、高通滤波器45、隔离放大器46和低通滤波器47。所述生物电感受器4通过皮肤表面电极41或针状电极42接受治疗区域组织对磁场力和磁性纳米抗肿瘤药物刺激的生物电反应,经过生物放大器的生物电放大及生物电信号分析处理,传送给控制装置5;控制装置5依据治疗区域生物电信号的强弱和范围,进一步调节磁场强度和药液输送速度,这种依据治疗区域组织对磁力和药物刺激反应的生物电信号,实时地反馈至调节磁场控制装置6和流速控制器5的控制,能有效地确保调节准确度更高,使用更加安全。 如图4所示,所述磁场发生装置3为交流线圈形成的旋转磁场,其通过固定件(图中未示出)固定在对本文档来自技高网...
【技术保护点】
一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括用于盛装有抗肿瘤磁性纳米粒子药物的输液容器及与输液容器相连接的输送抗肿瘤磁性纳米粒子药物的药液输送装置,其特征在于:在对应于肿瘤区域的体表外设有能将抗肿瘤磁性纳米粒子药物产生磁吸附作用的磁场发生装置和感应肿瘤区域活体组织对磁力刺激反应的生物电感应器;还包括设有接受和分析生物电感应器信号以及依据生物电感应器信号总控所需磁场强度、输液速度和液体流量的控制装置;所述磁场发生装置上连接有控制磁场强度的磁场控制装置;所述药液输送装置上连接有控制其流速的流速控制器,所述控制装置分别与生物电感应器、磁场控制装置和流速控制器对应连接; 所述生物电感应器包括放置于对应肿瘤区域的治疗区域表面的表面电极或针状电极、生物电放大器和信号处理系统,所述表面电极或针状电极将探测到治疗区域组织对磁场力和磁性纳米抗肿瘤药物刺激的生物电反应,经过生物放大器的生物电放大及信号处理系统的信号分析处理,传送给控制装置。
【技术特征摘要】
1.一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括用于盛装有抗肿瘤磁性纳米粒子药物的输液容器及与输液容器相连接的输送抗肿瘤磁性纳米粒子药物的药液输送装置,其特征在于:在对应于肿瘤区域的体表外设有能将抗肿瘤磁性纳米粒子药物产生磁吸附作用的磁场发生装置和感应肿瘤区域活体组织对磁力刺激反应的生物电感应器;还包括设有接受和分析生物电感应器信号以及依据生物电感应器信号总控所需磁场强度、输液速度和液体流量的控制装置;所述磁场发生装置上连接有控制磁场强度的磁场控制装置;所述药液输送装置上连接有控制其流速的流速控制器,所述控制装置分别与生物电感应器、磁场控制装置和流速控制器对应连接;
所述生物电感应器包括放置于对应肿瘤区域的治疗区域表面的表面电极或针状电极、生物电放大器和信号处理系统,所述表面电极或针状电极将探测到治疗区域组...
【专利技术属性】
技术研发人员:汪华,
申请(专利权)人:广州一代医药科技有限公司,
类型:新型
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。