一种高分辨率遥感图像多尺度自适应决策融合分割方法技术

技术编号:12876030 阅读:85 留言:0更新日期:2016-02-17 12:19
本发明专利技术是一种高分辨率遥感图像多尺度自适应决策融合分割方法。首先,应用分形网络演化分割算法,设置一系列递增尺度参数得到多尺度分割序列;其次,定义区域多尺度Moran′s I指数、临界分割尺度和欠分割Moran′s I指数阈值;最后,以最大分割尺度作为初始临界尺度逐个区域判定是否欠分割,如果欠分割则以多尺度Moran′s I指数首次达到最小值尺度作为新的临界尺度,依次递归进行尺度下推直至最小分割尺度层或当前层不存在欠分割区域,最终结合多尺度分割层之间的空间继承关系得到分割结果。本发明专利技术融合了多尺度分割信息,有效减弱过分割与欠分割、易分割与精确性的矛盾,可广泛应用于面向对象的专题目标识别等领域。

【技术实现步骤摘要】

本专利技术是一种实用的高分辨率遥感图像多尺度自适应决策融合分割方法,方法适 用于GF-1、GF-2、Worldview、QuickBird等高分辨率遥感图像的分割。本专利技术可广泛应用 于面向对象的专题目标识别、土地利用分类与变化检测等领域。
技术介绍
高分辨率遥感卫星的大量升空使得高分辨率卫星遥感数据的获取能力大幅提高, 人类进入到多源高分辨率对地观测数据获取的新时代。随着卫星遥感图像空间分辨率的提 高,图像的数据量和信息量越来越大,图像的空间结构和细节信息也更加丰富。然而,更高 的空间分辨率和较少的光谱波段数使得高分辨率遥感图像中同类地物之间的光谱差异性 增强,不同类地物之间的光谱差异性减弱,传统基于像素的处理方法已经不能满足应用的 需求。面向对象的图像处理与分析技术的出现,使得图像处理的基本单元由像元过渡到对 象,使得特征空间由单一像元光谱特征扩展到区域的光谱、空间纹理、形状和上下文关系等 特征。遥感图像分割是面向对象遥感图像处理与分析的基础,是面向对象分析的第一个层 次。因此,研究高效精确的高分辨率遥感图像分割方法,对于提高高分辨率遥感影像的信息 提取精度,促进高分辨率遥感图像应用具有十分重要的理论研究意义和应用价值。 针对遥感图像的分割问题,提出了大量的分割算法。按照分割算法所使用图像特 征的不同,可以将分割算法分为:基于阈值法的图像分割、基于边缘检测的图像分割和基于 区域生长的图像分割等。依据分割算法所使用数学模型的不同,可分为基于马尔科夫随机 场模型的分割、基于小波变换的分割、基于数学形态学的分割、基于聚类分析的分割、基于 图论的分割等等。根据分割过程中是否使用图像的多尺度信息,可将分割算法分为单尺度 分割和多尺度分割等等。 不同的地物对象具有不同的最佳空间表达尺度,只有在适宜的空间尺度下,地物 对象的空间本质特征才能更好的体现。针对多尺度的现实世界,需要应用多尺度或者多分 辨率的思想进行地物识别与解译。基于多尺度理论的图像分割其实并不是一种具体的图像 分割算法,而是提供了一种图像分割的策略与框架,这种框架与人眼观察识别图像有着类 似的特点,所以在图像分割甚至图像处理领域中被广泛应用。多尺度分割是从原始影像的 像元尺度上,进行"尺度上推"所得到多层次分割结果的过程。面对多尺度的分割结果,通 常从中选择某一尺度作为图像最佳分割结果,如何确定和选择最佳分割表达尺度也是多尺 度分割重点研究的问题。然而,高分辨率遥感图像具有多尺度特性,不同地物目标的最佳分 割尺度不同,选用单一尺度很难全面描述和刻画现实世界中的所有地物尺度特征。虽然多 尺度的分割结果能够综合呈现各个局部区域的最佳状态,但是如何有效地综合应用多尺度 的最佳分割信息是当前遥感图像分割领域研究的热点问题。 本专利技术从高分辨率遥感图像的多尺度特性和多尺度分割结果出发,在分析图像分 割尺度与分割质量、信息提取精度关系的基础上,受人眼识别图像模式的启发,提出了多尺 度自适应决策融合分割方法。本专利技术有效综合了图像多尺度的分割信息,能够有效减弱过 分割与欠分割、易分割与精确性的矛盾,获得高质量的分割结果。
技术实现思路
本专利技术是一种实用的高分辨率遥感图像多尺度自适应决策融合分割方法,通过多 尺度自适应决策融合策略实现多尺度分割信息的有机融合,获得高质量的分割结果。该发 明主要包括两部分内容:首先是多尺度分割模型的构建,其次是多尺度分割结果的自适应 决策融合。多尺度分割模型构建的过程是从像元尺度逐步进行"尺度上推"的过程,多尺度 分割结果决策融合的过程是从多尺度分割结果的最大尺度分割层进行"尺度下推"自适应 融合的过程。 具体方法的步骤为: 第一步:高分辨率遥感图像多尺度分割模型构建。 本专利技术首先应用分形网络演化分割算法,通过设置一系列递增尺度的分割参数, 得到高分辨率遥感图像多尺度分割序列,形成高分辨率遥感图像多尺度分割模型。分形网 络演化算法从像元层开始,采用"自下而上"的区域合并原则实现多尺度分割,根据相邻区 域或者对象的异质性测度最小原则,将特征相似的临近区域合并为更大的区域。合并的依 据是两个相邻对象合并前后异质性测度的变化是否小于某个阈值,而该阈值控制着面向对 象分割的尺度,即所谓的"尺度参数"。相比于其它的多尺度分割算法,分形网络演化多尺度 分割结果中较大尺度的分割结果是由较小尺度的分割结果合并而来,如第三层是由第二层 分割结果通过区域合并得到,其分割层与层之间具有严格的空间继承与对应关系,更利于 后续多尺度分割结果的融合与应用。 第二步:定义区域多尺度Moran'sI指数以及临界分割尺度。 2-1)区域多尺度MoraYsI指数是指在多尺度分割结果中,最大尺度分割结果 中的每个区域都对应着一个多尺度的分割区域序列,通过计算最大尺度上每个区域在多尺 度分割序列中所有尺度上的Moran'sI指数,构成该区域的多尺度Moran'sI指数序列, 称为区域多尺度Moran'sI指数。 Moran'sI指数是最早由Moran在1950年提出的一种全局聚类检验方法,研究 整个研究区中邻近区域是相似(空间正相关)、相异(空间负相关)还是相互独立。该指标 可以反映出区域属性值的分布是聚集、离散或者随机分布模式。全局Moran'sI指数计算 公式: 上述公式中:N是研究区内的区域总数,Wlj是空间权重,表示区域i和区域j的邻 近关系,通常用一个二元对称空间权重矩阵W来表达N个区域的空间邻接关系,^和"分 别是区域i和区域j的属性值,i是所有区域属性的平均值。 对最大分割尺度上每一个区域对应的多尺度分割序列,计算每一个尺度上分割区 域的整体Moran'sI指数,构成了该分割区域的多尺度Moran'sI指数序列。 2-2)临界分割尺度是指在图像的多尺度分割序列中,由过分割变成欠分割的尺度 转折点。 最大尺度上的分割区域如果存在欠分割现象,则随着分割尺度的增加,多尺度 Moran'sI指数首次达到最小值的点所对应的分割尺度定义为该多尺度分割序列的临界 分割尺度。 第三步:多尺度分割结果的自适应决策融合。 3-1)判定临界尺度上的分割区域是否存在欠分割。 首先在此定义一个Moran'sI指数阈值,以多尺度分割序列的最大分割尺度作 为初始临界尺度,对其上的每个区域通过多尺度Moran'sI指数的最大值判定该区域是 否欠分割。如果多尺度Moran'sI指数序列中的最大值超过该阈值,则说明该区域存在欠 分割现象,同样,如果多尺度Moran'sI指数序列中的最大值没有超过该阈值,则说明该 当前第1页1 2 本文档来自技高网
...

【技术保护点】
高分辨率遥感图像多尺度自适应决策融合分割方法,其步骤为:第一步:生成高分辨率遥感图像多尺度分割结果基于分形网络演化分割算法,通过设置一系列递增尺度的分割参数,得到高分辨率遥感图像的多尺度分割序列,较大尺度的分割结果是由较小尺度的分割结果进行区域合并而来,如第三层是由第二层的分割区域通过区域合并得到,其相邻分割层与层之间具有严格的空间继承与对应关系;第二步:依据高分辨率遥感图像的多尺度分割结果,定义区域多尺度Moran’s I指数以及临界分割尺度2‑1)在多尺度分割结果中,最大尺度分割结果中的每个区域都对应着一个多尺度的分割区域序列,通过计算最大尺度上每个区域在所有尺度上对应区域的整体Moran’s I指数,构成该区域的多尺度Moran’s I指数序列,称为区域多尺度Moran’s I指数,全局Moran’s I指数计算公式:I=NΣiΣjwij(xi-x‾)(xj-x‾)(ΣiΣjwij)Σi(xi-x‾)2]]>上述公式中:N是研究区内的区域总数,wij是空间权重,表示区域i和区域j的邻近关系,Xi和Xj分别是区域i和区域j的属性值,是所有区域属性的平均值;2‑2)在区域的多尺度分割序列中,由过分割变成欠分割的尺度转折点定义为临界分割尺度,根据区域多尺度Moran’s I指数的最大值和随尺度的变化趋势,找到过分割和欠分割的临界点,该临界点所对应的分割尺度即为该多尺度分割序列的临界分割尺度;第三步:多尺度分割结果的自适应决策融合3‑1)在此定义一个Moran′s I指数阈值,以多尺度分割序列中最大分割尺度作为初始临界尺度,对其上的每个区域计算多尺度Moran’s I指数序列,如果多尺度Moran′s I指数序列中的最大值超过该阈值,则说明该区域存在欠分割现象,同样,如果多尺度Moran′s I指数序列中的最大值没有超过该阈值,则说明该区域不存在欠分割现象;3‑2)临界尺度上的区域如果欠分割,则区域多尺度Moran′s I指数首次达到最小值的点所对应的分割尺度即为新的临界分割尺度,进而将当前临界分割尺度作为新的初始临界尺度,依次对新临界分割尺度上的每个区域自适应的递归进行“尺度下推”,直至到达最小分割尺度层或者当前层不存在欠分割区域,按照第三步中的方法依次对最大分割尺度上的每个区域进行自适应决策融合,进而结合多尺度分割层之间的空间继承关系,得到多尺度自适应决策融合后的最终分割结果。...

【技术特征摘要】

【专利技术属性】
技术研发人员:王桂周何国金刘建波张兆明王猛猛
申请(专利权)人:中国科学院遥感与数字地球研究所
类型:发明
国别省市:北京;11

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1