【技术实现步骤摘要】
本方法涉及网络入侵检测系统领域,尤其涉及到一种基于关联规则分类的网络入侵检测方法。
技术介绍
入侵检测通过收集和分析网络行为、安全日志、审计数据、其它网络上可以获得的信息以及计算机系统中若干关键点的信息,检查网络或系统中是否存在违反安全策略的行为和被攻击的迹象。它对于网络系统安全发挥着非常重要的作用,是防火墙的重要补充,入侵检测能够在不影响网络系统性能指标的情况下完成对网络系统的保护。将数据挖掘技术应用于网络入侵检测已成为一个研究的热点,国内外已出现不少这方面的研究成果,但仍存在如下一些不足和难点:多数数据挖掘的入侵检测系统集中于异常检测或误用检测,而异常检测具有较高的误报率,误用检测具有较高的漏报率;目前,多数系统属于准实时系统,不能及时对入侵做出检测并响应;面对不同的网络环境,以及不断改变的入侵类型,当前的网络入侵检测系统缺乏自适应性。将数据挖掘技术中的Apriori算法应用到入侵检测领域具有很强的理论基础,在技术上具有可行性。Apriori算法提取的关联规则由频繁项集生成,规则具有很强的置信度,分类结果精确度较高,很好地避免了异常检测高误报率和误用检测高漏报率的缺陷。
技术实现思路
本专利技术针对传统入侵检测系统的缺陷,提出了一种基于关联规则分类的网络入侵检测方法,通过采用Apriori-index算法来处理大量网络连接数据,提高入侵检测的及时性和准确性。通过在10%KDDCup99实验数据集上测试,对比其他入侵检测算法,该算法的整体检测效果较优。本专利技术技术方案:一种基于关联规 ...
【技术保护点】
一种基于关联规则分类的网络入侵检测方法包括以下步骤:第1步、对国际标准数据集10%KDDCup99预处理,并将预处理后的数据集分成训练集和测试集两部分数据;第2步、采用改进的Apriori算法(Apriori‑index)对选取的训练集中的网络连接数据进行训练,提取到关联规则,将关联规则存放到关联规则库中,同时将关联规则库中的关联规则展示出来;第3步、测试集中的每条网络连接数据逐条匹配关联规则库中关联规则,根据不同关联规则的条件长度和网络连接类型分别计算权值,找出最大权值所对应的网络连接类型即为最终分类得到的结果;第4步、保存第3步中分类结果,将上述分类过程和分类得到的结果展示出来;同时为保证该方法良好的自学习特性,测试集的数据在根据关联规则分类得到具体的网络连接类型后,训练集数据连同对应的网络连接类型重新加入到训练集数据中,为后续关联规则提取提供新的训练集数据源,保证关联规则的动态更新。
【技术特征摘要】
1.一种基于关联规则分类的网络入侵检测方法包括以下步骤:
第1步、对国际标准数据集10%KDDCup99预处理,并将预处理后的数据集分成训练集和测试集两部分数据;
第2步、采用改进的Apriori算法(Apriori-index)对选取的训练集中的网络连接数据进行训练,提取到关联规则,将关联规则存放到关联规则库中,同时将关联规则库中的关联规则展示出来;
第3步、测试集中的每条网络连接数据逐条匹配关联规则库中关联规则,根据不同关联规则的条件长度和网络连接类型分别计算权值,找出最大权值所对应的网络连接类型即为最终分类得到的结果;
第4步、保存第3步中分类结果,将上述分类过程和分类得到的结果展示出来;同时为保证该方法良好的自学习特性,测试集的数据在根据关联规则分类得到具体的网络连接类型后,训练集数据连同对应的网络连接类型重新加入到训练集数据中,为后续关联规则提取提供新的训练集数据源,保证关联规则的动态更新。
2.根据权利要求1所述的基于关联规则分类的网络入侵检测方法,其特征在于:第1步中数据集预处理的方法是:
第1.1步、为每列数据添加位置参数;因为10%KDDCup99数据集中有大量相同的数据,数据集中处于不同列的数据有不同的含义,而原始的Apriori算法在处理数据集中不同列的相同数据项时将他们视为同样的数据,因此直接使用原始的A...
【专利技术属性】
技术研发人员:王劲松,莫敬涛,黄玮,杨传印,
申请(专利权)人:天津理工大学,
类型:发明
国别省市:天津;12
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。