本发明专利技术属于光电子功能材料技术领域,特别是涉及作为激光和飞秒激光材料,它提供了一种复合石榴石化合物掺镱硅铝酸钇镁,化学式为YbxY3-x-yMgyAl5-ySiyO12,Yb掺杂含量为0<x≤1.5,Mg和Si的掺杂含量均为0<y≤1.5。掺镱硅铝酸钇镁的合成方法采用高温固相法,合成环境为空气,结构类型属于石榴石结构,其相比较掺镱钇铝石榴石具有更宽的吸收和发射带宽,更加适合激光二极管泵浦,并有利于获得更短脉宽的中高功率飞秒激光。
【技术实现步骤摘要】
本专利技术属于光电子功能材料
,特别是涉及作为激光和飞秒激光材料。
技术介绍
飞秒激光是当今激光前沿技术发展的重要方向之一,直接应用于精细加工和激光通讯,同时在医学、核物理、飞秒脉冲光谱学以及超高速光通信等领域有着重要的地位。随着大功率激光二极管的迅速发展,全固态飞秒激光器的研制和生产成为高新技术产业的热点,飞秒激光材料作为其核心工作物质,已经成为整个激光
发展的重点之一。以钇铝石榴石(Y3A15012)为代表的石榴石材料具有各向同性、高热导率、高光学质量、优异的机械强度和物化性能等特点,特别是在1微米附近激光输出方面,经过近50年的研究和发展,掺镱钇铝石榴石(Yb:Y3Al5012)已经成为一种十分重要的激光材料和飞秒激光材料。随着大功率激光二极管的发展,中高功率的飞秒激光在工业和科技领域占据越来越重要的角色,薄盘激光技术可以有效的解决激光媒介的散热问题,自其诞生和发展以来被认为是输出中高功率飞秒激光的重要激光技术。瑞士科学家J.Aus der Au等人在2000年首次进行了薄盘锁模激光实验,以掺镱钇铝石榴石晶体作为增益介质获得了脉宽为730fs输出功率高达16.2W的脉冲激光。2014年德国科学家W.Schneider等人成功将输出功率提高到100W以上,脉冲宽度为800fs。瑞士 Clara J.Saraceno等人对近十几年的薄盘锁模激光技术进行了总结,掺镱钇铝石榴石是最早应用到该项激光技术上的材料,也是目前为止应用最为广泛的,薄盘锁模技术将传统锁模技术得到的W级功率成功提高到100W级,开创了中高功率飞秒激光的新篇章。然而,其获得的脉冲宽度却被限制在了 700-800fs左右,根本原因在于掺镱钇铝石榴石在1030nm附近的发射峰太过尖锐,其半峰宽仅仅只有9nm。众所周知,越宽的发射谱带越有利于获得更短的脉冲激光,而对于掺镱钇铝石榴石来讲,尖锐的发射峰是它成为理想中高功率飞秒激光材料的致命缺陷。无序结构是指晶体中某些格位同时被多种原子占据,这种结构在长程范围内有序,但部分格位点是无序的。当激活离子掺入具有无序结构的基质晶体中后,如果所替代原子的格位是无序的,则会出现多个发光中心并产生迭加效应,从而导致其吸收和发射谱带展宽。Ca4Y0(B03)3、Ca4Gd0(B03)3、CaGaA104、CaYA10jP SrY4(Si04)30 等很多激光晶体都得益于这种无序结构而使得掺入激活离子后获得较宽的吸收和发射谱带。因此,将结构分析与光谱和激光性能相结合,针对掺镱钇铝石榴石通过设计和构造无序结构来展宽其掺Yb3+后的吸收和发射谱带,从而有望缩短以其作为增益介质所获得的激光脉宽。镁铝石榴石是一种天然的石榴石,它同样具有高热导率、优异的机械强度和物化性能。由于其和钇铝石榴石同属石榴石结构,特征离子(Y3+和Mg2+;4配位Al3+和Si 4+)之间离子半径十分接近,因此将适量镁铝石榴石掺入钇铝石榴石后可形成一种复合石榴石。由于该复合石榴石中出现了金属阳离子Y3+和Mg2+之间的统计分布,即构造了具有无序结构的复合石榴石,当激活离子Yb3+掺入后,会同时占据Y3+和Mg2+的位置,出现多个发光中心,从而展宽其光谱带宽。展宽后的吸收谱带将更适合激光二极管直接栗浦,而展宽后的发射谱带将有利于输出更短脉宽的飞秒激光。
技术实现思路
本专利技术的目的在于公开一种复合石榴石化合物掺镱硅铝酸钇镁,其化学式为YbxY3x yMgyAl5 ySiy012,Yb掺杂含量为0〈x彡1.5,Mg和Si的掺杂含量均为0〈y彡1.5,其相比较掺镱钇铝石榴石具有更宽的吸收和发射带宽,更加适合激光二极管栗浦,并有利于获得更短脉宽的中高功率飞秒激光。本专利技术的技术方案如下:具体化学方程式为:xYb203+ (3-x-y) Y203+2yMg0+ (5-y) Al203+2ySi02= 2Yb XY3 x yMgyAl5 ySiy012其中,Yb掺杂含量为0〈x ( 1.5,Mg和Si的掺杂含量均为0〈y ( 1.5。所用原料及纯度为:Yb203(99.99% )、Y203(99.99% ), A1203 (分析纯)、Si02(分析纯)和 MgO(分析纯)。掺镱硅铝酸钇镁的合成采用高温固相法,合成环境为空气,具体过程如下:初始原料为Yb203、Y203、A1203、S1jP MgO,根据化学方程式按照化学计量比称取原料;在球磨机中研磨搅拌均匀后压制成块料;将块料置于刚玉杯中后再置于马弗炉中并升温至1200-1400°C,恒温烧结合成10-50个小时;降至室温取出后重新研磨混合均匀,压制成块料后再次置于马弗炉中并升温至1400-1600°C ;恒温烧结合成10-50个小时,降至室温后取出。对掺镱硅铝酸钇镁进行了 X射线粉末衍射分析,所得衍射图谱的峰型和峰位均与ICSD数据库里钇铝石榴石纯相保持一致,说明所得到的化合物具有和钇铝石榴石一样的石榴石结构。对掺镱硅铝酸钇镁进行了粉末吸收光谱和发射光谱测试,结果表明其吸收光谱和发射光谱相比较掺镱钇铝石榴石均出现了展宽现象,而且随着镁铝石榴石掺杂含量的增加展宽更加明显。因此,本专利技术中所制备的掺镱硅铝酸钇镁有望成为更加适合激光二极管栗浦的中高功率飞秒激光材料,同时还可以较好地解决掺镱钇铝石榴石在薄盘锁模激光应用中的脉冲宽度无法进一步缩短的难点。【具体实施方式】下面结合具体实施例,对本专利技术作进一步说明,但不应以此限制本专利技术的保护范围。实施例1:制备掺镱硅铝酸钇镁YbxY3 x yMgyAl5 ySiy012(x = 0.3 ;y = 0.3,0.6,0.9,1.2,1.5),初始原料为Yb2o3、Y203、A1203、S1jP MgO,根据化学方程式按照化学计量比分别称取原料;在球磨机中研磨搅拌均匀后压制成块料;将块料置于刚玉杯中后再置于马弗炉中并升温至1200-1400°C,恒温烧结合成10-50个小时;降至室温取出后重新研磨混合均匀,压制成块料后再次置于马弗炉中并升温至1400-1600°C ;恒温烧结合成10-50个小时,降至室温后取出。X射线粉末衍射分析表明五种化合物的物相与ICSD数据库中钇铝石榴石纯相保持一致,说明其具有石榴石结构;粉末吸收光谱分析表明,五种化合物在933nm附近的吸收半峰宽分别为57nm、64nm、65nm、74nm和81nm,在965nm附近的吸收半峰宽分别为25nm、26nm、27nm、28nm和30nm,相比掺镱乾招石植石在940nm附近18nm的半峰宽和在968nm附近4nm的半峰宽均有明显的展宽,而且展宽随着镁铝石榴石含量的增加而更加明显;发射光谱分析表明,五种化合物在1030nm附近的吸收半峰宽分别为13nm、15nm、17nm、20nm和28nm,相比掺镱钇铝石榴石在1030nm附近9nm的半峰宽均有明显的展宽,而且展宽随着镁铝石榴石含量的增加而更加明显。【主权项】1.掺镱硅铝酸钇镁,其特征在于:化学式为YbXY3 x yMgyAl5 ySiy012,Yb掺杂含量为0〈x彡1.5,Mg和Si的掺杂含量均为0〈y彡1.5,属于石植石结构。2.如权利要求1所述的掺镱硅铝酸钇镁的用途,其特征在于:该化合物可用于制备成荧光粉、激光陶瓷和激光晶体本文档来自技高网...
【技术保护点】
掺镱硅铝酸钇镁,其特征在于:化学式为YbxY3‑x‑yMgyAl5‑ySiyO12,Yb掺杂含量为0<x≤1.5,Mg和Si的掺杂含量均为0<y≤1.5,属于石榴石结构。
【技术特征摘要】
【专利技术属性】
技术研发人员:孙士家,林州斌,黄溢声,苑菲菲,张莉珍,
申请(专利权)人:中国科学院福建物质结构研究所,
类型:发明
国别省市:福建;35
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。