本发明专利技术公开了一种氨基官能团化合物及N-连接糖链标记带正电荷质谱衍生化试剂,具体指MPST试剂。该试剂含有带正电荷三苯基膦化学结构,可对氨基官能团化合物及N-连接糖链进行化学标记,利用色谱-质谱(LC-MS)联用技术,建立氨基官能团代谢物及N-连接糖链的高灵敏、高选择性的分析方法。因本试剂本身带有正电荷,并在MS/MS中可获得质荷比(m/z)为120的特定碎片离子,可在电喷雾离子化正离子(ESI+)模式下,能显著提高质谱的检测灵敏度、易于结构推断。为生物代谢组学的研究及微量糖链生物功能的研究及各种疾病生物标志物的筛选提供新型高灵敏度带正电荷的质谱试剂(图3)。
【技术实现步骤摘要】
氨基官能团化合物及糖链标记带正电荷质谱衍生化试剂
本专利技术涉及生物分析领域的含氨基官能团代谢物分析及差异性糖组学领域,特别是含氨基官能团化合物及N-连接糖链分析用高灵敏度质谱衍生化试剂。
技术介绍
代谢组学(Metabonomics)是定量描述生物内源性代谢物质的整体状況及其对内外环境变化做出应答的规律性科学。代谢组学通过测量细胞、组织和机体代谢产物的浓度变化来反映基因、蛋白质和代谢活性本身的直接关系。由于代谢组学的变化是机体对基因、疾病、环境和药物等作用的最终反映,其内源性代谢产物是机体一系列生命活动的关键或终点反应。因此,代谢组学可以帮助人们更好地了解生物体中各种复杂的相互作用及其本质。近年来,代谢组学在疾病诊断和动物模型、药物代谢、中药成分的安全性评价等研究方面取得了新的突破和进展。但其分析方法仍然是代谢组学迅速发展的瓶颈之一。早期的代谢组学研究方法主要采用核磁共振(NMR)技术、气相-质谱(GC-MS)技术和毛细管电泳-质谱(CE-MS)技术。NMR的主要优点是测定条件温和,不改变样品的结构和理化性质,还可进行动态测定,但有检测灵敏度低,动态范围窄等局限性。相比较之下,LC-MS联用技术,利用液相技术的卓越分离能力和高重复性,质谱技术的多通道监测功能,特别是高分辨率质谱凭借其普适性、高灵敏度和较宽的动态检测范围、特异性的特点,已成为代谢组学研究的主流技术。可应用于不挥发性化合物、极性化合物、热不稳定化合物和大分子量化合物的分析。但也有对一些代谢物因离子化效率低检测灵敏度达不到要求,尤其对复杂生物样品中的代谢产物难以达到提高选择性和高灵敏度检测的目的。另外,糖组学(Glycomics)是研究糖蛋白上所有糖链的表达、调控和生理功能的学科。糖组学的研究不仅是基因组学和蛋白质组学的延续,而且是彻底阐明基因功能的必由之路,也是破解生命信息的第三条途径。糖组学关注的焦点是糖蛋白,为了更好地与蛋白质组学相关联,所以将研究对象锁定为糖蛋白的糖链。链接糖蛋白糖链主要有N-连接和O-连接,与蛋白质的天冬酰胺(Asn)残基的氨基侧链共价键相连为N-糖链,与蛋白质的丝氨酸或苏氨酸(Ser/Thr)羟基氧上相连为O-糖链。而生物体内大部分糖链为N-糖链,并且主要定位于细胞膜表面和膜蛋白,其对细胞的癌症和转移、以及造血功能起着重要作用。因此,在本专利技术研究中将以N-糖链为分析对象。到目前为止,核磁共振(NMR)技术已成为糖链立体化学结构分析的有效工具。主要优点是测定条件温和,既不改变样品的结构和理化性质,又可确定糖的构型,连接位置、分支和微观多样性。但NMR测定糖的信号峰重叠严重,解析较难,灵敏度低,而且需要毫克级样品,这对多数糖复合物中的微量糖链分析是很难达到的。与之相比较,现代高效液相色谱-质谱(LC-MS)联用技术利用液相技术的卓越分离能力和高重复性,质谱技术的多通道监测功能,特别是高分辨率质谱凭借其普适性、高灵敏度和较宽的动态检测范围、特异性的特点,已成为生物样品中复杂微量糖链的定性和定量分析的主流技术。但也有一些生物样本不可再生,而且存在不能鉴别糖链立体结构的问题。分析糖蛋白糖链的传统方法一般是将糖链切掉(肼解法和酶法)并分离纯化后进行分析。因为糖链本身没有发色基团,而且其在质谱仪上不易离子化,为了在分离纯化和结构鉴定过程中能够更有效地检测到糖链,一般进行柱前衍生的方法。该方法主要是使糖链带上紫外或荧光基团,提高检测的灵敏度,同时又可以使糖链带上疏水基团,降低糖链的极性,使糖链在反相色谱柱上得到保留,利于糖链的分离。目前对糖链进行衍生化标记的试剂较多,主要有1-苯基-3-甲基-5-吡唑啉酮(PMP),2-氨基吡啶(2-AP),氨基苯甲酸酯类衍生试剂(ABEE),苯胺类衍生试剂(2-AB)。虽然利用这些试剂对糖链进行标记后可以用于HPLC分离后在荧光或MS上进行检测,可以在一定程度上能提高糖链分析的选择性和灵敏度,但这些试剂的化学反应条件较难控制,不同糖链结构需要摸索不同的衍生化条件,不仅容易发生去糖基化现象,而且需要多步程序其手续繁琐费时。其中还原胺化法由于产物稳定而成为常用的衍生化方法之一,但该方法对糖链的还原端直接进行标记,而原糖链的回收比较困难,衍生化过程中还可能发生还原端异构化、β-消除反应、唾液酸丢失而引起检测时出现难以判断的情况,并且衍生后的糖链会形成还原端开环结构,导致糖链的部分生物信息丢失以及对糖链的一些活性造成影响。近年,Kamoda(J.ProteomeRes.4(2005)146-152.)等利用N-糖苷酶F(PNGaseF)酶解得到完整的N-糖链和肽段后,使糖链还原端与铵盐等反应生成中间产物糖铵(Glycosylamine),糖铵再与荧光衍生化试剂反应,开发了N-糖链分析方法。这种分析方法虽然在糖链衍生化过程中保持糖链原有的结构,不会形成还原端开环的优点,但因使用荧光衍生化试剂,有时在LC-MS达不到检测要求,而且糖链结构解析困难,很难达到同时分析多种糖链的目的。
技术实现思路
本专利技术的目的是为了克服现有氨基官能团代谢物及N-糖链在LC-MS检测灵敏度的不足,提供一种本身带有正电荷,并在MS/MS中可获得质荷比(m/z)为120的特定碎片离子,可在电喷雾离子化正离子(ESI+)模式下,能显著提高质谱的检测灵敏度、易于结构推断的氨基官能团化合物及糖链标记带正电荷的质谱衍生化试剂。本专利技术所提供的技术方案为:一种氨基官能团化合物及糖链标记带正电荷质谱衍生化试剂,以三苯基膦(Triphenylphosphine,TPP)和2-[4-(溴甲基苯基)]-丙酸[2-[4-(Bromomethyl)phenyl]-propionicacid(2-4-BMPPA)],N-羟基琥珀酰亚胺(N-hydroxysuccinimide)为起始物,反应合成[4-(methyl)phenyl-2-propionyl-N-succinimido]-triphenylphosphoniumbromide(MPST),该MPST试剂具有如下结构式:。本专利技术,设想对氨基官能团代谢物进行化学衍生化方法开发高灵敏度、高选择性LC-MS分析方法;针对糖蛋白中N-糖链,首先利用N-糖苷酶F(PNGaseF)酶解得到完整的N-糖链和肽段后,使糖链还原端与铵盐等反应生成中间产物糖铵,糖铵再与新合成的质谱衍生化试剂反应,开发高灵敏度、高选择性N-糖链分析方法。为生物代谢组学及微量糖链生物功能的深入研究及各种疾病生物标志物的筛选提供有效、可靠的分析检测手段。本专利技术着眼于带正电荷、易质子化、并在电喷雾正离子化模式(ESI+)中,有利于选择反应监测(SRM)或多反应监测(MRM)分析的三苯基膦(Triphenylphospine)化学结构为母体,开发了具有高灵敏度、高选择性的靶向氨基官能团同时能标记糖链的带正电荷质谱衍生化试剂。带正电荷质谱衍生化试剂的开发,将对发展和建立高灵敏、高选择性的生物体内微量糖链分析方法及含氨基官能团代谢物分析方法起到瓶颈作用,对探索筛选真正有效的糖链生物标志物和代谢生物标志物,具有重要意义。本专利技术涉及氨基官能团化合物及N-连接糖链分析用试剂,具体指MPST试剂。该试剂含有带正电荷的三苯基膦结构,可以对N-糖苷酶本文档来自技高网...
【技术保护点】
一种氨基官能团化合物及糖链标记带正电荷质谱衍生化试剂,以三苯基膦(Triphenylphosphine, TPP) 和2‑[4‑(溴甲基苯基)]‑丙酸[2‑[4‑(Bromomethyl)phenyl]‑propionic acid (2‑4‑BMPPA)], N‑羟基琥珀酰亚胺(N‑hydroxysuccinimide)为起始物,反应合成[4‑(methyl) phenyl‑2‑propionyl‑N‑succinimido]‑triphenylphosphonium bromide (MPST),该MPST试剂具有如下结构式:。
【技术特征摘要】
1.一种糖链标记带正电荷质谱衍生化试剂,以三苯基膦(Triphenylphosphine,TPP)和2-[4-(溴甲基苯基)]-丙酸[2-[4-(Bromomethyl)phenyl]-propionicacid(2-4-BMPPA)],N-羟基琥珀酰亚...
【专利技术属性】
技术研发人员:闵俊哲,李喜玲,
申请(专利权)人:延边大学,
类型:发明
国别省市:吉林;22
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。