深空通信中基于四级流水线的高速QC-LDPC编码器制造技术

技术编号:12409398 阅读:105 留言:0更新日期:2015-11-29 17:41
本发明专利技术提供了一种深空通信中基于四级流水线的高速QC-LDPC编码器,该编码器包括1个稀疏矩阵与向量的乘法器、1个I型后向迭代电路、1个高密度矩阵与向量的乘法器和1个II型后向迭代电路。稀疏矩阵与向量的乘法器实现稀疏矩阵与向量的乘法运算,高密度矩阵与向量的乘法器实现高密度矩阵与向量的乘法运算,I型和II型后向迭代电路都实现后向迭代运算。整个编码过程划分为4级流水线。本发明专利技术提供的深空通信系统中1/2码率高速QC-LDPC编码器具有结构简单、成本低、吞吐量大等优点。

【技术实现步骤摘要】

本专利技术涉及信道编码领域,特别涉及一种CCSDS深空通信系统中基于四级流水线 的高速QC-LDPC编码器。
技术介绍
低密度奇偶校验(Low-Density Parity-Check, LDPC)码是高效的信道编码技术 之一,而准循环 LDPC(Quasi-Cyclic LDPC,QC-LDPC)码是一种特殊的 LDPC 码。QC-LDPC 码 的生成矩阵G和校验矩阵H都是由循环矩阵构成的阵列,具有分段循环的特点,故被称为 QC-LDPC码。循环矩阵的首行是末行循环右移1位的结果,其余各行都是其上一行循环右 移1位的结果,因此,循环矩阵完全由其首行来表征。通常,循环矩阵的首行被称为它的生 成多项式。 深空通信标准采用系统形式的QC-LDPC码,其生成矩阵G的左半部分是一个单位 矩阵,右半部分是由eXc个bXb阶循环矩阵彡i〈e, e彡j〈t, t = e+c)构成的阵列, 如下所示: 其中,I是bXb阶单位矩阵,0是bXb阶全零矩阵。G的连续b行和b列分别被 称为块行和块列。由式(1)可知,G有e块行和t块列。深空通信标准采用了一种码率η =1/2 的 QC-LDPC 码,对于该码,t = 20, e = 8, c = 12, b = 2048。 深空通信标准中1/2码率QC-LDPC编码器的现有解决方案是基于12个I型移位 寄存器加累加器(Type-I Shift-Register-Adder-Accumulator,SRAA-I)电路的串行编码 器。由12个SRAA-I电路构成的串行编码器,在16384个时钟周期内完成编码。该方案需 要49152个寄存器、24576个二输入与门和24576个二输入异或门,还需要196608比特ROM 存储循环矩阵的生成多项式。该方案有两个缺点:一是需要大量存储器,导致电路成本高; 二是串行输入?目息比特,编码速度慢。
技术实现思路
深空通信系统中1/2码率QC-LDPC编码器的现有实现方案存在成本高、编码速度 慢的缺点,针对这些技术问题,本专利技术提供了一种基于四级流水线的高速QC-LDPC编码器。 如图2所示,深空通信系统中基于四级流水线的高速QC-LDPC编码器主要由4部 分组成:稀疏矩阵与向量的乘法器、I型后向迭代电路、高密度矩阵与向量的乘法器和II型 后向迭代电路。编码过程分4步完成:第1步,使用稀疏矩阵与向量的乘法器计算向量f和 w ;第2步,使用I型后向迭代电路计算向量q和X ;第3步,使用高密度矩阵与向量的乘法 器计算部分校验向量Px;第4步,使用II型后向迭代电路计算向量y,y与向量q异或得到 部分校验向量Py,从而得到校验向量P = (Px, Py)。 本专利技术提供的深空通信系统中1/2码率高速QC-LDPC编码器结构简单,能在显著 提高编码速度的条件下,减少存储器,从而降低成本,提高吞吐量。 关于本专利技术的优势与方法可通过下面的专利技术详述及附图得到进一步的了解。【附图说明】 图1是行列交换后近似下三角校验矩阵的结构示意图; 图2是基于四级流水线的QC-LDPC编码过程; 图3是循环左移累加器RLA电路的功能框图; 图4是由4个RLA电路构成的一种高密度矩阵与向量的乘法器; 图5是稀疏矩阵与向量的乘法器; 图6给出了稀疏矩阵与向量的乘法器中各个多输入异或门与寄存器的连接关系; 图7是I型后向迭代电路; 图8给出了矩阵Q中非零循环矩阵所在的块位置及其循环右移位数; 图9是II型后向迭代电路; 图10给出了矩阵Y中非零循环矩阵所在的块位置及其循环右移位数; 图11总结了编码器各编码步骤以及整个编码过程所需的硬件资源和处理时间。【具体实施方式】 下面结合附图对本专利技术的较佳实施例作详细阐述,以使本专利技术的优点和特征能更 易于被本领域技术人员理解,从而对本专利技术的保护范围作出更为清楚明确的界定。 循环矩阵的行重和列重相同,记作w。如果w = 0,那么该循环矩阵是全零矩阵。如 果w = 1,那么该循环矩阵是可置换的,称为置换矩阵,它可通过对单位矩阵I循环右移若干 位得到。QC-LDPC码的校验矩阵H是由cXt个bXb阶循环矩阵H j, k (1彡j彡c,1彡k彡t,t =e+c)构成的如下阵列: 通常情况下,校验矩阵H中的任一循环矩阵要么是全零矩阵(w = 0)要么是置换 矩阵O = 1)。令循环矩阵Hjik的首行g_jik= (g_jikil, g_jiki2,…,g_jikib)是其生成多项式,其中 0或I (1彡m彡b)。因为H是稀疏的,所以g ]ik只有1个'1',甚至没有'1'。 对于深空通信系统中1/2码率的QC-LDPC码,H的前8块列对应的是信息向量 a,后12块列对应的是校验向量p。以b比特为一段,信息向量a被等分为8段,即a = (a!,a2,…,as);校验向量p被等分为12段,即p = (P1, p2,…,p12)。 对校验矩阵H进行列交换操作,将其变换成近似下三角形状HAW,如图1所示。列 交换的过程如下:前8块列保持不动,第9~16块列与后4块列互换。 在图1中,所有矩阵的单位都是b = 2048比特而不是1比特。A是由8X8个bXb 阶循环矩阵构成,B是由8X4个bXb阶循环矩阵构成,T是由8X8个bXb阶循环矩阵 构成,C是由4X8个bXb阶循环矩阵构成,D是由4X4个bXb阶循环矩阵构成,E是由 4X8个bXb阶循环矩阵构成。T是下三角矩阵,u = 4反映了校验矩阵与下三角矩阵 的接近程度。在图1中,矩阵A和C对应信息向量a,矩阵B和D对应一部分校验向量px = (P1, P2,…,P4),矩阵T和E则对应余下的校验向量py= (p 5, p6,…,p12)。p = (px, py)。上 述矩阵和向量满足如下关系: ρχτ= Φ (ET 1AaVCax) (3) p/= T 1Max+BpxT) (4) 其中,Φ = (ET 4+D) \上标"和1分别表示转置和逆。众所周知,循环矩阵的逆、 乘积、和仍然是循环矩阵。因此,Φ也是由循环矩阵构成的阵列。虽然矩阵E、T、B和D都 是稀疏矩阵,但通常情况下Φ不再稀疏而是高密度的。 令 fT= Aa T,qT= T -1fT,wT= Ca T,xT= Eq T+wT,pxT= Φχ T,yT= T -1BpxT以及 p /= qT+yT。向量f和W可由下式计算得到: -旦计算得出px,yT= T MBpx1可改写为: T= YT= 0 (9) 其中, Y = (10) 因为Q和Y与T 一样都是下三角矩阵,所以式(7)中的和式(9)中的y都 可采用后向迭代的计算方式。 Φ涉及高密度矩阵与向量的乘法,F涉及稀疏矩阵与向量的乘法,而Q和Y涉及 后向迭代计算。根据以上讨论,可给出一种基于四级流水线的QC-LDPC编码过程,如图2所 不。 ρχτ= Φχ τ等价于 p χ= χΦ τ。令 χ = (X1, X2,…,xuXb)。定义 u 比特向量 Sn = (xn, xn+b,…,xn+(u 1)xb),其中1彡η彡b。令Φ』(1彡j彡u)是由Φτ的第j块列中所有循 环矩阵生成多项式构成的uXb阶矩阵。则有 Pj=(…((0+s 丄^^产⑴+如①.)1"1)+…+~?.)1"1本文档来自技高网
...

【技术保护点】
一种深空通信中基于四级流水线的高速QC‑LDPC编码器,1/2码率QC‑LDPC码的校验矩阵H是由c×t个b×b阶循环矩阵构成的阵列,其中,c=12,t=20,b=2048,e=t‑c=8,校验矩阵H通过行列交换变换成近似下三角形状,可划分为6个子矩阵,H=ABTCDE,]]>A是由8×8个b×b阶循环矩阵构成,B是由8×4个b×b阶循环矩阵构成,下三角矩阵T是由8×8个b×b阶循环矩阵构成,C是由4×8个b×b阶循环矩阵构成,D是由4×4个b×b阶循环矩阵构成,E是由4×8个b×b阶循环矩阵构成,Φ=(ET‑1B+D)‑1是由4×4个b×b阶循环矩阵构成,Φj是由ΦT的第j块列中所有循环矩阵生成多项式构成的4×b阶矩阵,其中,上标Τ和‑1分别表示转置和逆,1≤j≤4,Q=T0EI]]>是由12×12个b×b阶循环矩阵Qj,k构成,其中,I是单位矩阵,0是全零矩阵,1≤j≤12,1≤k≤12,非零循环矩阵Qj,k相对于b×b阶单位矩阵的循环右移位数是sj,k,其中,0≤sj,k<b,Y=[B T]是由8×12个b×b阶循环矩阵Yj,k构成,其中,1≤j≤8,1≤k≤12,非零循环矩阵Yj,k相对于b×b阶单位矩阵的循环右移位数是sj,k,其中,0≤sj,k<b,A和C对应信息向量a,矩阵B和D对应一部分校验向量px,矩阵T和E则对应余下的校验向量py,校验向量p=(px,py),以b比特为一段,信息向量a被等分为8段,即a=(a1,a2,…,a8),校验向量p被等分为12段,即p=(p1,p2,…,p12),px=(p1,p2,…,p4),py=(p5,p6,…,p12),向量f被等分为8段,即f=(f1,f2,…,f8),向量w被等分为4段,即w=(f9,f10,…,f12),[f w]=(f1,f2,…,f12),向量q被等分为8段,即q=(q1,q2,…,q8),向量x被等分为4段,即x=(q9,q10,…,q12),[q x]=(q1,q2,…,q12),向量y被等分为8段,即y=(y1,y2,…,y8),其特征在于,所述编码器包括以下部件:稀疏矩阵与向量的乘法器,由20个2048比特寄存器R1,1,R1,2,…,R1,20和12个多输入异或门X1,1,X1,2,…,X1,12组成,用于计算向量f和w;I型后向迭代电路,由12个2048比特寄存器R2,1,R2,2,…,R2,12和11个多输入模2加法器A2,2,A2,3,…,A2,12组成,用于计算向量q和x;高密度矩阵与向量的乘法器,由4个查找表L1,L2,…,L4、8个b比特寄存器R3,1,R3,2,…,R3,8和4个b位二输入异或门X3,1,X3,2,…,X3,4组成,用于计算部分校验向量px,查找表L1,L2,…,L4分别存储可变的4比特向量与固定的矩阵Φ1,Φ2,…,Φ4的所有可能乘积;II型后向迭代电路,由12个2048比特寄存器R4,1,R4,2,…,R4,12和8个多输入模2加法器A4,1,A4,2,…,A4,8组成,用于计算向量y,y与向量q异或得到部分校验向量py,从而得到校验向量p=(px,py)。...

【技术特征摘要】

【专利技术属性】
技术研发人员:张鹏
申请(专利权)人:荣成市鼎通电子信息科技有限公司
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1