本发明专利技术涉及一种Y型分子筛的制备改性方法,其特征在于包括NaY分子筛经铵交换、在水热条件下处理以及加入硅溶胶、醇类物质和柠檬酸溶液改性等步骤,所说的NaY分子筛是依照导向剂、硅源、铝源和水的顺序依次加入混料罐后得到的混合物A进行水热晶化得到,其中,所说的导向剂是将偏铝酸钠与水玻璃混合,使水玻璃中铝元素的摩尔浓度由零渐升至形成摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2的混合物B,再顺序经过动态陈化、静置陈化,再补加水得到的。该方法得到的分子筛产品,晶胞参数为2.461-2.467nm,具有更高的结晶保留度,晶粒平均直径为50~800nm。
【技术实现步骤摘要】
一种Y型分子筛的制备改性方法
本专利技术涉及一种Y型分子筛的制备改性方法,更具体的说本专利技术涉及一种Y型分子筛的非模板剂下的制备改性方法。
技术介绍
五十年代末,Milton和Breck成功地合成出Y型分子筛。由于Y型分子筛的结构中SiO2与Al2O3之比大于X型分子筛,从而热稳定性和水热稳定性得到改善。七十年代初,Grace公司发展了导向剂法合成NaY分子筛,原料以水玻璃代替了昂贵的硅溶胶,工艺得到简化,生长周期变短,从而使NaY分子筛迅速而广泛地应用到石油化工尤其是石油裂化催化领域。迄今为止,在已经开发的上百种分子筛中,在工业上使用量最大的是Y型分子筛。目前,Y型分子筛的合成在工业上主要采用晶种胶法。由于晶种胶的使用与改进,使Y型分子筛的合成晶化的时间大大缩短,为Y型分子筛的工业化奠定了基础。工业上的应用和发展对分子筛的合成及其产品性能提出了更高的要求,反过来也促进了分子筛合成技术的深入研究。对Y型分子筛合成的更高要求主要集中在合成小晶粒及超细颗粒的分子筛产品、提高硅铝比以及合成高硅铝比比且小晶粒及超细颗粒的分子筛产品等三个方面。小晶粒尺寸的Y型分子筛由于具有较大的外表面积和较高的晶内扩散速率,在提高转化大分子能力、减小产物的二次裂化及降低催化剂结焦等方面,表现出比常规晶粒尺寸Y型分子筛更为优越的性能,因此小晶粒的Y型分子筛的合成研究成为热点。以常规方法合成的Y型分子筛一般具有约1000nm的晶粒尺寸,而小晶粒甚至可以达到纳米级(<100nm)晶粒尺寸这方面的合成报道仍然较少。用热粉碎技术处理Y型分子筛,虽然可以使其晶粒度减小到100nm,但这种物理粉碎处理的方式不仅耗费较大能量,而且破坏了分子筛的晶体结构,使之部分无定形化。如果能够直接合成小晶粒Y型分子筛则是最简便可行的方法,因此,必须将优化常规Y型分子筛的合成条件,通过改善和增加导向剂量、提高投料碱度等方法降低分子筛粒径,以获取小晶粒Y型分子筛产品和适合分子筛商业化的最佳条件。合成条件的优化通常包括如晶种胶的制备、老化时间的影响、硅铝凝胶的制备和水热晶化的条件,包括碱度、晶化温度和晶化时间等。硅铝凝胶的组成一般受晶化条件的影响而导致分子筛不同;水热晶化条件更直接的影响着分子筛的合成,它们既相互制约,又相互影响着分子筛的硅铝比、结晶度和晶粒度。硅铝凝胶的碱度是分子筛合成过程中一个十分关键的因素,提高合成体系的碱度可以制备出微细NaY分子筛。由于工业上大多采用含多聚态硅的水玻璃为硅源,提高体系碱度,不仅可以增大多聚态硅的解聚,而且有利于硅铝凝胶中形成更多的晶核,从而使晶粒尺寸减小。Schhoeman等(SehoemanBJ,SterteJ,ChemicalCommunications,1993:994~99)采用高碱度、高硅铝比的方法,从液相中直接合成了晶粒尺寸小于150nm的NaY分子筛。但是,随着体系碱度的增大,合成产物的收率下降。Bi-ZengZ等人在研究中还发现当合成体系n(Na2O)/n(Al2O3)=6~15,并在转速大于3000r/min的高速搅拌下制备均相、流动性硅铝胶,可以制得粒径在100nm以下的Y型分子筛,但硅铝比一般小于4.5(Bi-ZengZ,MaryA.W,MiehaelL.ControlofParticlesizeandsurfaceProPertlesofCrystaIsofNaXZeolite,ChemistryofMaterials,2002,14:363-3642)。Y型分子筛的合成方法中,包括有基于工业合成的导向剂法和基于模板剂的清液合成法。基于工业合成的导向剂法中,通过向合成体系中添加稀土离子、铝络合剂和表面活性剂等添加剂,可降低NaY分子筛的平均粒径,但其缺点是粒径分布较宽。Linder等(LindnerT.,LechertH.,Zeolites,1996,16:196-206)在研究矿化剂对八面沸石合成的影响时发现,向合成体系中添加少量的可与铝形成稳定络合物的有机络合剂,一般都能促进分子筛的成核及晶体的生长,因而使得分子筛的晶粒尺寸减小,粒径分布变窄,而且不会降低分子筛骨架硅铝比。Maher等在US3516786中公开了一种合成八面沸石型分子筛的方法,在合成体系升温晶化步骤之前,向合成体系中加入了少量可与水混溶的有机溶剂,如二甲砜、N,N-二甲基甲酰胺、四氢呋喃、甲醇、乙醇、丙酮等,最终分子筛晶粒尺寸为0.01~0.1μm。Ambs等在US4372931中为了减小因升温而带来的有机溶剂的挥发,使用了葡萄糖,最终晶粒尺寸为0.035~0.069μm。但是,添加有机溶剂后,分子筛的骨架SiO2/Al2O3比较低,一般低于2.5。而另一种基于模板剂的清液合成法,该法可以获得纳米级的NaY分子筛,且具有晶体粒径分布较窄的优点,但其产品收率很低,成本很高。Holmberg等通过加入四甲基溴化铵和四甲基氢氧化铵双模板剂,通过优化TMA+和阴离子的浓度控制Y型分子筛晶粒尺寸和收率,最终合成出粒度为37nm的Y型分子筛,但其产品收率很低且成本很高(HolmbergB.A.,WangH.,ControllingsizeandyieldofzeoliteYnanocrystalsUsingtetramethylammoniumbromide,MicroPorousandMesoPorousMaterial,2003,59:13-28)。骨架硅铝比的高低及其孔道的结构决定了分子筛的主要性质与功能。一般来讲,硅铝比越高的分子筛往往具有更强的耐热、耐水蒸气和抗酸能力;另外,不同类型的分子筛对某些催化反应,随其硅铝比的变化也表现出不同的特定规律性。因此,可以通过直接合成或通过改性的方法(即二次合成)得到不同类型分子筛的硅铝比,从而调控其性质和功能。用常规方法合成的Y型分子筛的硅铝比小于5.0,一般将硅铝比大于6.0的叫高硅Y型分子筛。得到高硅Y型分子筛的常用的方法有两种:一种是直接合成的方法,另一种是在一次合成的基础上,将产物采用特定的路线进行再加工,即通过二次合成的方法提高骨架硅铝比。目前,二次合成法主要有:高温水热法(US3449370)、高温气相反应法(US4701313)、氟硅酸铵液相反应法(US4093560)等,这些方法的缺点是制备步骤繁杂、沸石结晶度损失较大、制备工艺流程比较复杂、收率低和环境污染较大等。而直接合成的方法中需要综合考虑较多的因素,例如:反应混合物的组成、制备方式、反应物来源、导向剂的制备、搅拌与否、凝胶酸碱度和晶化条件等等。通常硅铝比越低的Y型分子筛越易制得,反之硅铝比越高要求的制备条件就越苛刻,较难合成出理想的样品。在直接合成的方法中,常用提高硅铝比的途径主要有以下几种:一种途径是延长晶化时间,但是,该途径在硅铝比大于5.5后,晶化速率呈指数形式下降,使合成因耗时、成本高而不适用于工业生产;另一种途径是使用有机胺(US5116590,US4965059,CN96105159.7,CN97196899)或无机盐(US4333859,US4309313)作为模板剂,但是这同样存在成本高、晶化时间长、硅的利用率偏低等问题,同时,大量高浓度的硅废液被排出,既浪费亦污染环境。直接合成高硅铝本文档来自技高网...
【技术保护点】
一种Y型分子筛的制备改性方法,其特征在于包括如下步骤:(1)制备NaY分子筛;(2)将NaY分子筛经铵交换得到氧化钠的重量含量为2.5‑5%的NH4NaY分子筛;(3)在水热条件下处理NH4NaY分子筛;和(4)将NH4NaY分子筛打浆后,加入pH为2‑4的硅溶胶和C2‑C4的有机醇类物质并用柠檬酸溶液调pH为3‑6,在温度为80‑120℃下充分混合,再经水洗和干燥得到改性产品;其中,所说的步骤(1)中制备NaY分子筛的过程是在合成NaY分子筛的条件下,将依照导向剂、硅源、铝源和水的顺序依次加入混料罐后得到的混合物A进行水热晶化并回收得到的产物,所说的导向剂是将偏铝酸钠与水玻璃混合,使水玻璃中铝元素的摩尔浓度由零渐升至形成摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2的混合物B,再顺序经过动态陈化、静置陈化,再补加水得到的。
【技术特征摘要】
1.一种Y型分子筛的制备改性方法,其特征在于包括如下步骤:(1)制备NaY分子筛;(2)将NaY分子筛经铵交换得到氧化钠的重量含量为2.5-5%的NH4NaY分子筛;(3)在水热条件下处理NH4NaY分子筛;和(4)将NH4NaY分子筛打浆后,加入pH为2-4的硅溶胶和C2-C4的有机醇类物质并用柠檬酸溶液调pH为3-6,在温度为80-120℃下充分混合,再经水洗和干燥得到改性产品;其中,所说的步骤(1)中制备NaY分子筛的过程是在合成NaY分子筛的条件下,将依照导向剂、硅源、铝源和水的顺序依次加入混料罐后得到的混合物A进行水热晶化并回收得到的产物,所说的导向剂是在15~60℃温度及搅拌条件下,将偏铝酸钠向水玻璃中加入,使水玻璃中铝元素的摩尔浓度由零渐升至形成摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2的混合物B,将混合物B在搅拌条件、15~60℃下进行5~48小时,再在静置条件、15~60℃下进行5~48小时,之后再补加水,使最终摩尔配比为(6~25)Na2O:A12O3:(6~25)SiO2:(200~400)H2O得到的。2.按照权利要求1的方法,其中,所说的混合物A的摩尔配比为(2~6)Na2O:A12O3:(8~20)Si...
【专利技术属性】
技术研发人员:鲁玉莹,付强,李永祥,胡合新,慕旭宏,
申请(专利权)人:中国石油化工股份有限公司,中国石油化工股份有限公司石油化工科学研究院,
类型:发明
国别省市:北京;11
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。