本实用新型专利技术涉及一种空调器,包括通过管道连通的压缩机、室外换热器和室内换热器,还包括第一四通阀和第二四通阀,第一四通阀包括a1端口、b1端口、c1端口和d1端口,第二四通阀包括a2端口、b2端口、c2端口和d2端口,压缩机的出口与a1端口通过管道连通,压缩机的入口与c1端口通过管道连通,室外换热器的两端分别通过管道连通b2端口和d2端口,室内换热器的两端分别通过管道连通b1端口和c2端口,d1端口和a2端口通过管道连通。本实用新型专利技术通过对两个四通阀通电和断电的控制,实现制热模式和化霜模式的转换,从而加快了化霜速度,提升了化霜效果,避免了房间温度的较大波动。
【技术实现步骤摘要】
本技术涉及一种空调器,具体地说,是涉及一种改善化霜效果的冷暖型空调器,属于空调器
技术介绍
传统的冷暖型带电辅热空调器在制热时,若外界环境温度较低,运行一段时间后室外换热器(也叫冷凝器)上会结霜,从而降低换热器的换热能力,影响空调器的正常运行。此时,空调器会进入化霜模式,化霜时冷媒按制冷方向流动,化霜结束后,空调器才能正常工作。化霜时间一般需要10分钟左右,在化霜过程中,空调器不会向室内制热,相反室内蒸发器的温度会大幅降低到-20°c以下。特别是在低温高湿的环境温度下,化霜更会频繁进行,从而造成房间温度不断波动,影响用户的舒适性。为克服逆向化霜方式的上述缺点,现有技术中还出现了一种旁通化霜方式,也称为不间断制热化霜方式。如下述在先专利所公布的内容,专利申请号200910134993.0,为一种空调器化霜器。该方案是在压缩机排气口与四通阀之间的管路上旁通一条流路接到冷凝器出液端与节流部件之间,流路上串联一个电磁阀。控制系统判断需要化霜时打开直接旁通流路上的电磁阀,让大部分高温气态冷媒直接流向冷凝器进行化霜。当排气温度下降到一定温度时,旁通流路上的电磁阀关闭,四通阀断电,系统按制冷循环进行化霜(又称正向化霜)。该化霜方式在霜层较少的情况下可以加快系统化霜,但如果霜层较厚,则经几次循环后压缩机的排气温度下降明显,造成化霜时间延长。在先专利所公布的内容,专利申请号200910020567.4,为一种冷暖型变频空调器及其化霜方法。该方案是针对空调器用变频压缩机的化霜结构及化霜方法,该空调器室外机在压缩机排气管处旁通一回路到冷凝器出口管与电子膨胀阀之间。逆向化霜时,一部分冷媒通过旁通回路直接流到冷凝器进行化霜,一部分冷媒经过室内加热后流到冷凝器化霜。逆向化霜过程中室内电加热和室内风机工作。逆向化霜化不干净的情况下系统转成制冷循环化霜,直到化霜完全后重新进行正常制热。该方案由于制热时一部分冷媒经过室内吸热造成室内温度波动,虽然通过开电加热器辅助加热。若是冷媒吸收的热量和电加热器辅助加热的热量接近的情况下,极易造成室内温度波动。同时冷媒分流后不利于冷凝器快速化霜,造成化霜时间延长。
技术实现思路
本技术针对现有技术中的上述缺点和不足,提供一种结构简单、运行方便的空调器,以提高空调器的化霜效率。本技术解决上述技术问题的技术方案如下:一种空调器,包括通过管道连通的压缩机、室外换热器和室内换热器,还包括第一四通阀和第二四通阀,所述第一四通阀包括al端口、bl端口、Cl端口和dl端口,所述第二四通阀包括a2端口、b2端口、c2端口和d2端口,所述压缩机的出口与al端口通过管道连通,所述压缩机的入口与cI端口通过管道连通,所述室外换热器的两端分别通过管道连通b2端口和d2端口,所述室内换热器的两端分别通过管道连通bl端口和c2端口,dl端口和a2端口通过管道连通;所述第一四通阀通电时,al端口和bl端口导通,cl端口和dl端口导通;所述第一四通阀断电时,al端口和dl端口导通,bl端口和cl端口导通;所述第二四通阀通电时,a2端口和d2端口导通,b2端口和c2端口导通;所述第二四通阀断电时,a2端口和b2端口导通,c2端口和d2端口导通。本技术所述的空调器为冷暖型空调器,可以是挂壁式空调器或落地式空调器。在上述技术方案的基础上,本技术还可以做如下改进。进一步,在c2端口与室内换热器之间的管道上设有节流部件,所述节流元件为毛细管或电子膨胀阀。采用上述进一步方案的有益效果是节流部件具有对管道中的冷媒进行节流降压作用,空调器中常用的是管径1.0-3.5_左右细长的毛细管或者是可自动将制冷剂的循环量控制为一定值的电子膨胀阀。进一步,在所述室外换热器处设有室外风机,所述室外风机将风引入室外换热器;在所述室内换热器处设有室内风机,所述室内换热器的背风侧设有至少在所述空调器化霜过程中开启运行的室内电加热器,所述室内风机正转时将风先引入室内换热器再经过室内电加热器,所述室内风机反转时将风先经过室内电加热器再引入室内换热器。采用上述进一步方案的有益效果是室外风机和室内风机的具体位置不做限定,只要实现可以引风就可以,其中室外风机是将风引入室外换热器,而室内风机需要与室内换热器和室内电加热器的位置相配合,通过正转和反转,实现不同的引风效果。本技术还涉及一种上述空调器的化霜方法,包括以下步骤:步骤一:空调器为制热模式时,压缩机正常运行,第一四通阀通电,第二四通阀断电,室外风机运行,室内风机正转;步骤二:当空调器的系统判定达到化霜条件时(即当室外换热器结霜到一定程度,空调器的电控板检测到达到化霜条件时),压缩机停机或降频,室外风机停止,第一四通阀断电,第二四通阀通电;步骤三:在设定时间tl后,室内电加热器处于工作状态,室内风机反向转动,风速为微风状态运行;步骤四:在设定时间t2后,压缩机启动或升频,进入化霜模式;步骤五:当空调器的系统判定达到退出化霜条件时,退出化霜模式,压缩机停机或降频,室外风机开启,第一四通阀通电,第二四通阀断电;步骤六:在设定时间t3后,压缩机启动或升频,室外风机运行,室内风机正向微风转动,室内电加热器继续工作;步骤七:检测室内机盘管的温度,若达到Tx时室内风机按化霜前设定转速运行,若达到Ty时室内电加热器关闭,回到制热模式。空调器的系统判定达到化霜条件采用现有技术中的通用方法,在空调器
,空调器化霜条件很多种,但是根据空调器使用地域环境工况的不同,最合适的化霜条件各不相同,下面例举一些国内一般空调器普遍采用的几种化霜触发条件:第一种进入条件:1、当进入制热模式或者除霜模式大概5分钟后,根据室外机盘管温度和室内温度的最大差值,来判断,判断时间为3分钟。2、当室内机盘管温度和室内温度的差值减小5度以上并且持续3分钟以上。3、保证压缩机积累工作时间超过45分钟。4、室内机盘管温度小于48度。同时满足这4种情况则开始进入化霜。第二种条件:压缩机累计运行时间超过45分钟,并且连续运行超过20分钟,室内机盘管温度小于室内温度16度5分钟则进入化霜状态。第三种条件:压缩机累计运转超过3小时连续运转超过20分钟,室内机盘管温度小于室内温度16度5分钟则进入化霜状态。第四种条件:室外风机进入过载保护且室外风机停转,在室外风机下次启动连续运转时间大于10分钟,还要保证压缩机累计运行时间超过45分钟或连续转20分钟室内机盘管温度小于48度则进入化霜状态。第五种条件:室外风机停转两小时还没有进入化霜,则强行进入化霜。进一步,步骤一中,本技术空调器的制热模式为:冷媒从压缩机的出口排出后经过第一四通阀的al端口和bl端口流到室内换热器,然后经过节流部件和第二四通阀的c2端口和d2端口后流到室外换热器中蒸发,经过第二四通阀的b2端口和a2端口流出,经第一四通阀的dl端口和Cl端口从压缩机的入口流回压缩机。进一步,步骤四中,本技术空调器的化霜模式为:高温高压的气态冷媒从压缩机的出口排出后经第一四通阀的al端口和dl端口流出,经过第二四通阀的a2端口和d2端口从室外换热器下部进入化霜,然后从室外换热器上部流出,经过第二四通阀的b2端口和c2端口流经节流部件到室内换热器,在室内换热器中低温本文档来自技高网...
【技术保护点】
一种空调器,包括通过管道连通的压缩机(1)、室外换热器(4)和室内换热器(8),其特征在于,还包括第一四通阀(2)和第二四通阀(3),所述第一四通阀(2)包括a1端口、b1端口、c1端口和d1端口,所述第二四通阀(3)包括a2端口、b2端口、c2端口和d2端口,所述压缩机(1)的出口与a1端口通过管道连通,所述压缩机(1)的入口与c1端口通过管道连通,所述室外换热器(4)的两端分别通过管道连通b2端口和d2端口,所述室内换热器(8)的两端分别通过管道连通b1端口和c2端口,d1端口和a2端口通过管道连通;所述第一四通阀(2)通电时,a1端口和b1端口导通,c1端口和d1端口导通;所述第一四通阀(2)断电时,a1端口和d1端口导通,b1端口和c1端口导通;所述第二四通阀(3)通电时,a2端口和d2端口导通,b2端口和c2端口导通;所述第二四通阀(3)断电时,a2端口和b2端口导通,c2端口和d2端口导通。
【技术特征摘要】
【专利技术属性】
技术研发人员:周向阳,
申请(专利权)人:广东美的制冷设备有限公司,美的集团股份有限公司,
类型:新型
国别省市:广东;44
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。