精简应变监测受损索载荷广义位移识别方法基于应变监测,通过监测索结构温度和环境温度来决定是否需要更新索结构的力学计算基准模型,得到计入索结构温度和环境温度的索结构的力学计算基准模型,在此模型的基础上计算获得单位损伤被监测量数值变化矩阵。依据被监测量当前数值向量同被监测量当前初始数值向量、单位损伤被监测量数值变化矩阵和待求的被评估对象当前名义损伤向量间存在的近似线性关系算出被评估对象当前名义损伤向量的非劣解,据此可以识别核心被评估对象的健康状态。
【技术实现步骤摘要】
斜拉桥、悬索桥、桁架结构等结构有一个共同点,就是它们有许多承受拉伸载荷的 部件,如斜拉索、主缆、吊索、拉杆等等,该类结构的共同点是以索、缆或仅承受拉伸载荷的 杆件为支承部件,为方便起见,本方法将该类结构表述为"索结构",并将索结构的所有承载 索、承载缆,及所有仅承受轴向拉伸或轴向压缩载荷的杆件(又称为二力杆件),为方便起 见统一称为"索系统",本方法中用"支承索"这一名词指称承载索、承载缆及仅承受轴向拉 伸或轴向压缩载荷的杆件,有时简称为"索",所以在后面使用"索"这个字的时候,对桁架结 构实际就是指二力杆件。在结构服役过程中,对支承索或索系统的健康状态的正确识别关 系到整个索结构的安全。在环境温度发生变化时,索结构的温度一般也会随着发生变化,在 索结构温度发生变化时,在索结构服役过程中,索结构支座可能发生广义位移,索结构承受 的载荷也可能发生变化,同时索结构的健康状态也可能在发生变化,在这种复杂条件下,本 方法基于应变监测(本方法将被监测的应变称为"被监测量")来识别支座广义位移和受损 索,属工程结构健康监测领域。
技术介绍
剔除载荷变化、索结构支座广义位移和结构温度变化对索结构健康状态识别结果 的影响,从而准确地识别结构的健康状态的变化,是目前迫切需要解决的问题;剔除载荷变 化、索结构健康状态变化和结构温度变化对索结构支座广义位移识别结果的影响,从而准 确地识别索结构支座广义位移,也是目前迫切需要解决的问题;本方法公开了一种解决这 两个问题的有效的、廉价的方法。
技术实现思路
技术问题:本方法公开了一种方法,在造价更低的条件下,实现了两种功能,分别 是,一、剔除支座广义位移、载荷变化和结构温度变化对索结构健康状态识别结果的影响, 从而准确地识别出支承索的健康状态;二、本方法还能够剔除载荷变化、索结构健康状态变 化和结构温度变化对索结构支座广义位移识别结果的影响,从而准确地识别索结构支座广 义位移。 技术方案:在本方法中,用"支座空间坐标"指称支座关于笛卡尔直角坐标系的X、 Y、Z轴的坐标,也可以说成是支座关于X、Y、Z轴的空间坐标,支座关于某一个轴的空间坐标 的具体数值称为支座关于该轴的空间坐标分量,本方法中也用支座的一个空间坐标分量表 达支座关于某一个轴的空间坐标的具体数值;用"支座角坐标"指称支座关于X、Y、Z轴的角 坐标,支座关于某一个轴的角坐标的具体数值称为支座关于该轴的角坐标分量,本方法中 也用支座的一个角坐标分量表达支座关于某一个轴的角坐标的具体数值;用"支座广义坐 标"指称支座角坐标和支座空间坐标全体,本方法中也用支座的一个广义坐标分量表达支 座关于一个轴的空间坐标或角坐标的具体数值;支座关于X、Y、Z轴的坐标的改变称为支座 线位移,也可以说支座空间坐标的改变称为支座线位移,本方法中也用支座的一个线位移 分量表达支座关于某一个轴的线位移的具体数值;支座关于X、Y、Z轴的角坐标的改变称为 支座角位移,本方法中也用支座的一个角位移分量表达支座关于某一个轴的角位移的具体 数值;支座广义位移指称支座线位移和支座角位移全体,本方法中也用支座的一个广义位 移分量表达支座关于某一个轴的线位移或角位移的具体数值;支座线位移也可称为平移位 移,支座沉降是支座线位移或平移位移在重力方向的分量。 物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷。面载荷又称表面 载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种。体积载荷是连续分布于物 体内部各点的载荷,如物体的自重和惯性力。 集中载荷分为集中力和集中力偶两种,在坐标系中,例如在笛卡尔直角坐标系中, 一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷 实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量称为一个载荷,此 时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化。 分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作 用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征(例 如均布、正弦函数等分布特征)和幅值来表达(例如两个分布载荷都是均布,但其幅值不 同,可以均布压力为例来说明幅值的概念:同一个结构承受两个不同的均布压力,两个分布 载荷都是均布载荷,但一个分布载荷的幅值是l〇MPa,另一个分布载荷的幅值是50MPa)。如 果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅 值的改变,而分布载荷的作用区域和分布集度的分布特征是不变的。在坐标系中,一个分布 载荷可以分解成若干个分量,如果这分布载荷的若干个分量的各自的分布集度的幅值发生 变化,且变化的比率不全部相同,那么在本方法中把这若干个分布载荷的分量看成同样数 量的独立的分布载荷,此时一个载荷就代表一个分布载荷的分量,也可以将其中分布集度 的幅值变化比率相同的分量合成为一个分布载荷或称为一个载荷。 体积载荷是连续分布于物体内部各点的载荷,如物体的自重和惯性力,体积载荷 的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表 达,分布集度用分布特征(例如均布、线性函数等分布特征)和幅值来表达(例如两个体积 载荷都是均布,但其幅值不同,可以自重为例来说明幅值的概念:同一个结构的两个部分的 材料不同,故密度不同,所以虽然这两个部分所受的体积载荷都是均布的,但一个部分所受 的体积载荷的幅值可能是10kN/m3,另一个部分所受的体积载荷的幅值是50kN/m3)。如果载 荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而体积 载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际 上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅 值发生变化的体积载荷。在坐标系中,一个体积载荷可以分解成若干个分量(例如在笛卡 尔直角坐标系中,体积载荷可以分解成关于坐标系的三个轴的分量,也就是说,在笛卡尔直 角坐标系中体积载荷可以分解成三个分量),如果这体积载荷的若干个分量的各自的分布 集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这若干个体积载荷的 分量看成同样数量的独立的载荷,也可以将其中分布集度的幅值变化比率相同的体积载荷 分量合成为一个体积载荷或称为一个载荷。 当载荷具体化为集中载荷时,在本方法中,"载荷单位变化"实际上是指"集中载荷 的单位变化",类似的,"载荷变化"具体指"集中载荷的大小的变化","载荷变化量"具体指 "集中载荷的大小的变化量","载荷变化程度"具体指"集中载荷的大小的变化程度","载荷 的实际变化量"是指"集中载荷的大小的实际变化量","发生变化的载荷"是指"大小发生 变化的集中载荷",简单地说,此时"某某载荷的某某变化"是指"某某集中载荷的大小的某 某变化"。 当载荷具体化为分布载荷时,在本方法中,"载荷单位变化"实际上是指"分布载 荷的分布集度的幅值的单位变化",而分布载荷的分布特征是不变的,类似的,"载荷变化" 具体指"分布载荷的分布集度的幅值的变化",而分布载荷的分布特征是不变的,"载荷变化 量"具体指"分布载荷的分布集本文档来自技高网...
【技术保护点】
精简应变监测受损索载荷广义位移识别方法,其特征在于所述方法包括:a.当索结构承受的载荷虽有变化,但索结构正在承受的载荷没有超出索结构初始许用载荷时,本方法适用;索结构初始许用载荷指索结构在竣工时的许用载荷,能够通过常规力学计算获得;本方法统一称被评估的支座广义位移分量、支承索和载荷为被评估对象,设被评估的支座广义位移分量的数量、支承索的数量和载荷的数量之和为N,即被评估对象的数量为N;确定被评估对象的编号规则,按此规则将索结构中所有的被评估对象编号,该编号在后续步骤中将用于生成向量和矩阵;本方法用变量k表示这一编号,k=1,2,3,…,N;本方法用名称“核心被评估对象”专指“被评估对象”中的被评估的支承索和支座广义位移分量,设被评估的支承索和支座广义位移分量的数量之和为P,即核心被评估对象的数量为P,本方法用名称“次要被评估对象”专指“被评估对象”中的被评估的载荷;设索系统中共有M1根支承索;确定指定的被监测点,被监测点即表征索结构应变信息的所有指定点,并给所有指定点编号;确定被监测点的被监测的应变方向,并给所有指定的被监测应变编号,“被监测应变编号”在后续步骤中将用于生成向量和矩阵,“索结构的全部被监测的应变数据”由上述所有被监测应变组成;本方法将“索结构的被监测的应变数据”简称为“被监测量”;所有被监测量的数量之和记为M,M应当大于核心被评估对象的数量,M小于被评估对象的数量;本方法中对同一个量实时监测的任何两次测量之间的时间间隔不得大于30分钟,测量记录数据的时刻称为实际记录数据时刻;物体、结构承受的外力可称为载荷,载荷包括面载荷和体积载荷;面载荷又称表面载荷,是作用于物体表面的载荷,包括集中载荷和分布载荷两种;体积载荷是连续分布于物体内部各点的载荷,包括物体的自重和惯性力在内;集中载荷分为集中力和集中力偶两种,在包括笛卡尔直角坐标系在内的坐标系中,一个集中力可以分解成三个分量,同样的,一个集中力偶也可以分解成三个分量,如果载荷实际上是集中载荷,在本方法中将一个集中力分量或一个集中力偶分量计为或统计为一个载荷,此时载荷的变化具体化为一个集中力分量或一个集中力偶分量的变化;分布载荷分为线分布载荷和面分布载荷,分布载荷的描述至少包括分布载荷的作用区域和分布载荷的大小,分布载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是分布载荷,本方法谈论载荷的变化时,实际上是指分布载荷分布集度的幅值的改变,而所有分布载荷的作用区域和分布集度的分布特征是不变的;在包括笛卡尔直角坐标系在内的坐标系中,一个分布载荷可以分解成三个分量,如果这分布载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这分布载荷的三个分量计为或统计为三个分布载荷,此时一个载荷就代表分布载荷的一个分量;体积载荷是连续分布于物体内部各点的载荷,体积载荷的描述至少包括体积载荷的作用区域和体积载荷的大小,体积载荷的大小用分布集度来表达,分布集度用分布特征和幅值来表达;如果载荷实际上是体积载荷,在本方法中实际处理的是体积载荷分布集度的幅值的改变,而所有体积载荷的作用区域和分布集度的分布特征是不变的,此时在本方法中提到载荷的改变时实际上是指体积载荷的分布集度的幅值的改变,此时,发生变化的载荷是指那些分布集度的幅值发生变化的体积载荷;在包括笛卡尔直角坐标系在内的坐标系中,一个体积载荷可以分解成三个分量,如果这体积载荷的三个分量的各自的分布集度的幅值发生变化,且变化的比率不全部相同,那么在本方法中把这体积载荷的三个分量计为或统计为三个分布载荷;b.本方法定义“本方法的索结构的温度测量计算方法”按步骤b1至b3进行;b1:查询或实测得到索结构组成材料及索结构所处环境的随温度变化的传热学参数,利用索结构的设计图、竣工图和索结构的几何实测数据,利用这些数据和参数建立索结构的传热学计算模型;查询索结构所在地不少于2年的近年来的气象资料,统计得到这段时间内的阴天数量记为T个阴天,在本方法中将白天不能见到太阳的一整日称为阴天,统计得到T个阴天中每一个阴天的0时至次日日出时刻后30分钟之间的最高气温与最低气温,日出时刻是指根据地球自转和公转规律确定的气象学上的日出时刻,不表示当天一定可以看见太阳,能够查询资料或通过常规气象学计算得到所需的每一日的日出时刻,每一个阴天的0时至次日日出时刻后30分钟之间的最高气温减去最低气温称为该阴天的日气温的最大温差,有T个阴天,就有T个阴天的日气温的最大温差,取T个阴天的日气温的最大温差中的最大值为参考日温差,参考日温差记为ΔTr;查询索结构所在地和所在海拔区间不少于2年的近年来的气象资料或实测得到索结构所处环境的温度随时间和海拔高度的变化数据和变化规律,计算得到索结构所在地和所在海拔区间不少于2年的近年...
【技术特征摘要】
【专利技术属性】
技术研发人员:韩玉林,韩佳邑,
申请(专利权)人:东南大学,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。