本发明专利技术属于机场驱鸟技术领域,特别涉及一种鸟类识别方法,包括如下步骤:(A)建立鸟类数据库,数据库中包括鸟的动态信息和鸟的基本信息;(B)通过红外热成像技术追踪移动物体,并根据物体飞行轨迹、大小判断移动物体是否为鸟类,若是鸟类继续跟踪并获取鸟的动态信息;通过红外热成像技术获取静态图像,通过对图像的背景、鸟成像大小光斑的处理采集鸟的基本信息;(C)将所采集到的鸟的动态信息、基本信息与数据库中存储的鸟的动态信息、基本信息进行匹配从而获得鸟的种类。这里不再通过鸟的叫声进行鸟种类的识别,而是通过红外成像的方式获取鸟的动态信息、静态信息,再根据数据库中存储的信息进行比对,从而确定鸟的种类,这样确定得到的鸟的种类信息非常的准确。
【技术实现步骤摘要】
本专利技术属于机场驱鸟
,特别涉及一种。
技术介绍
鸟撞又称鸟击,指鸟和飞机在空中相撞造成的飞行事故,具有多发性和突发性,一旦发生会使飞机受损,重者可使发动机失去动力,甚至飞机坠毁,造成重大人员伤亡。随着飞机性能的提高,航空业的发展,喷气式飞机的广泛应用,鸟撞事故也逐年增多,引起人们越来越关注。传统的鸟类识别很少,部分是基于鸣声的鸟类识别,且基于鸣声的研究主要集中在个体识别、种间识别、分析亲缘关系以及行为状态上,对多种不同鸟类种类识别研究尚不系统。现有研究中,一般以频率和音节长度等为特征参数,这种识别方法,对于某些鸟类识别中识别效果比较好,但在很多鸟类识别中效果不佳;而且,对于多种鸟类混合在一起鸣叫时,识别效果非常的差。
技术实现思路
本专利技术的目的在于提供一种,能够准确有效地对鸟的种类进行识别。为实现以上目的,本专利技术采用的技术方案为:一种,包括如下步骤:(A)建立鸟类数据库,数据库中包括鸟的动态信息和鸟的基本信息;(B)通过红外热成像技术追踪移动物体,并根据物体飞行轨迹、大小判断移动物体是否为鸟类,若不是鸟类,则放弃追踪,若是鸟类,则继续跟踪并获取鸟的动态信息;通过红外热成像技术获取静态图像,通过对图像的背景、鸟成像大小光斑的处理采集鸟的基本信息;(C)将所采集到的鸟的动态信息、基本信息与数据库中存储的鸟的动态信息、基本信息进行匹配从而获得鸟的种类。与现有技术相比,本专利技术存在以下技术效果:这里不再通过鸟的叫声进行鸟种类的识别,而是通过红外成像的方式获取鸟的动态信息、静态信息,再根据数据库中存储的信息进行比对,从而确定鸟的种类,这样确定得到的鸟的种类信息非常的准确。【具体实施方式】下面结合具体的实施方式,对本专利技术做进一步详细叙述。—种,包括如下步骤:(A)建立鸟类数据库,数据库中包括鸟的动态信息和鸟的基本信息;(B)通过红外热成像技术追踪移动物体,并根据物体飞行轨迹、大小判断移动物体是否为鸟类,若不是鸟类,则放弃追踪,若是鸟类,则继续跟踪并获取鸟的动态信息;通过红外热成像技术获取静态图像,通过对图像的背景、鸟成像大小光斑的处理采集鸟的基本信息;(C)将所采集到的鸟的动态信息、基本信息与数据库中存储的鸟的动态信息、基本信息进行匹配从而获得鸟的种类。当鸟在飞行的时候,其基本信息不明显,不容易获取,而鸟类静止时,其基本信息比较明显,因此,这里通过追踪动态飞行的鸟动态信息、静态的鸟的基本信息来实现鸟类特征信息的提取,然后将提取到的特征信息与数据库中存储的特征信息对比,从而实现鸟种类的识别。相较于鸟鸣声识别方案来说,识别的准确度高很多。优选地,鸟的动态信息、基本信息有很多,本实施例中优选地,所述鸟的动态信息包括鸟的飞行轨迹、飞行速度、飞行高度。所述鸟的基本信息包括鸟喙的形状、尾巴的形状、腿的长度。这里采用了比较容易获取的、便于处理的一些信息来作为特征进行获取和匹配,方便后续的操作。作为本专利技术的优选方案,所述的步骤C中,若未匹配成功,则进入人工处理模式,由工作人员确认获取的鸟类动态信息或静态信息是否有误,若无误,则新增鸟的种类或对已有的鸟类增加新的动态信息或基本信息,若有误,则返回步骤B重新获取鸟的动态信息或静态信息。虽然建立了鸟类数据库,但是不可避免的会出现新的鸟类进入,或者鸟类特征的获取出现错误,这里通过人工处理模式,对上述出现的情况进行手动处理,保证处理的准确性。优选地,所述鸟的飞行轨迹按照步骤数据化:(al)根据鸟的飞行轨迹拟合获得曲线方程;(a2)解析曲线方程得到曲线的拐点分布、曲率数值分布信息;(a3)将拐点分布、曲率数值分布信息作为飞行轨迹的数据存储。有的鸟飞行轨迹比较直,这样拐点就少,曲率数值较小;有的鸟飞行时喜欢急转弯,其飞行轨迹拟合出来的曲线拐点就多,曲率数值较大。这里通过曲线的拐点分布、曲率数值分布信息可以很好地区分出各种鸟类的飞行轨迹。所述鸟的飞行速度数据化为两个数值,即最低飞行速度和最高飞行速度;所述鸟的飞行高度数据化为两个数值,即最低飞行高度和最高飞行高度;所述鸟的腿的长度数据化为两个数值,即腿相对于身体比值的最小值和最大值。通过上述方式进行处理,将鸟的飞行轨迹、飞行速度、飞行高度、腿的长度这些信息处理成数字信息,这样既方便鸟类数据库的建立和存储,又方便后续的匹配处理。具体地,对于动态的鸟的匹配如下:所述的步骤C中,鸟的动态信息按下列步骤进行匹配:(bl)将采集到鸟的飞行轨迹的拐点分布、曲率数值分布信息与数据库中的进行比对,看分布是否一致,若一致,进入下一步;(b2)将采集到的鸟的飞行速度范围是否落在数据库中鸟的飞行速度范围之内,如果是,进入下一步;(b3)将采集到的鸟的飞行高度范围是否落在数据库中鸟的飞行高度范围之内,如果是,则可以断定两只鸟的品种相同。对于静态鸟的匹配如下:所述的步骤C中,鸟的基本信息按下列步骤进行匹配:(Cl)将采集到的鸟喙的图像与数据库中鸟喙的图像相交,重复部分大于指定阈值的判断为两者鸟喙形状相匹配并进入下一步;(c2)将采集到的尾巴的图像与数据库中尾巴的图像相交,重复部分大于指定阈值的判断为两者尾巴形状相匹配并进入下一步;(c3)将采集到的鸟的腿的长度数据范围是否落在数据库中腿的长度范围之内,如果是,则判断鸟的腿长相匹配,此时可以断定两只鸟的品种相同。需要注意的是,匹配的时候,只有bl、b2、b3同时满足,才能断定所监控的鸟的品种就是数据库中与之相匹配的鸟;同样地,只有Cl、c2、c3同时满足,才能断定所监控的鸟的品种是数据库中与之匹配的鸟。【主权项】1.一种,包括如下步骤: (A)建立鸟类数据库,数据库中包括鸟的动态信息和鸟的基本信息; (B)通过红外热成像技术追踪移动物体,并根据物体飞行轨迹、大小判断移动物体是否为鸟类,若不是鸟类,则放弃追踪,若是鸟类,则继续跟踪并获取鸟的动态信息;通过红外热成像技术获取静态图像,通过对图像的背景、鸟成像大小光斑的处理采集鸟的基本信息; (C)将所采集到的鸟的动态信息、基本信息与数据库中存储的鸟的动态信息、基本信息进行匹配从而获得鸟的种类。2.如权利要求1所述的,其特征在于:所述鸟的动态信息包括鸟的飞行轨迹、飞行速度、飞行高度。3.如权利要求1所述的,其特征在于:所述鸟的基本信息包括鸟喙的形状、尾巴的形状、腿的长度。4.如权利要求1所述的,其特征在于:所述的步骤C中,若未匹配成功,则进入人工处理模式,由工作人员确认获取的鸟类动态信息或静态信息是否有误,若无误,则新增鸟的种类或对已有的鸟类增加新的动态信息或基本信息,若有误,则返回步骤B重新获取鸟的动态信息或静态信息。5.如权利要求2所述的,其特征在于:所述鸟的飞行轨迹按照步骤数据化: (al)根据鸟的飞行轨迹拟合获得曲线方程; (a2)解析曲线方程得到曲线的拐点分布、曲率数值分布信息; (a3)将拐点分布、曲率数值分布信息作为飞行轨迹的数据存储; 所述鸟的飞行速度数据化为两个数值,即最低飞行速度和最高飞行速度; 所述鸟的飞行高度数据化为两个数值,即最低飞行高度和最高飞行高度; 所述鸟的腿的长度数据化为两个数值,即腿相对于身体比值的最小值和最大值。6.如权利要求5所述的,其特征在于:所述的步骤C中,鸟的动态信息按下列步骤进行匹配: 本文档来自技高网...
【技术保护点】
一种鸟类识别方法,包括如下步骤:(A)建立鸟类数据库,数据库中包括鸟的动态信息和鸟的基本信息;(B)通过红外热成像技术追踪移动物体,并根据物体飞行轨迹、大小判断移动物体是否为鸟类,若不是鸟类,则放弃追踪,若是鸟类,则继续跟踪并获取鸟的动态信息;通过红外热成像技术获取静态图像,通过对图像的背景、鸟成像大小光斑的处理采集鸟的基本信息;(C)将所采集到的鸟的动态信息、基本信息与数据库中存储的鸟的动态信息、基本信息进行匹配从而获得鸟的种类。
【技术特征摘要】
【专利技术属性】
技术研发人员:马军,梁耀,蔡磊,
申请(专利权)人:安徽卓域光电科技有限公司,
类型:发明
国别省市:安徽;34
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。