本发明专利技术属于纳米级锂盐的制备技术领域,具体公开了高纯碳酸锂的制备方法。首先将纯水加热至60~80℃,与单水氢氧化锂以质量比2∶1混合,再加入少量水溶性分散剂并充分搅拌作为锂源;将碳酰胺与纯水等质量混合作为碳酸源,碳酰胺与单水氢氧化锂摩尔比为1∶1.80~1.95;将锂源、碳酸源加入水热合成反应釜中,充分搅拌后封釜,放入烘箱,以3℃/min的速率升温至100℃~120℃,保温5~10h后取出,过滤釜内碳酸锂浆液得滤饼,并用煮沸的纯水趁热洗涤2~4次,制得湿料;所得湿料在250℃~350℃、压力-0.1Mpa~-0.08Mpa下干燥8~15h,得到粒径在20~90nm的碳酸锂粉末。
【技术实现步骤摘要】
本专利技术涉及纳米级锂盐的制备
,特别是涉及。
技术介绍
锂离子电池具有高容量、高电压、低能耗、无记忆效应、无公害、体积小。自放电少、循环次数多等优势,被广泛应用于移动电话、PDA、笔记本电脑、携带式光盘等电子产品中,并逐步向电动汽车、空间技术、国防工业等领域拓展,是当今最受关注的新型电池之一。锂离子电池由负极材料、正极材料及电解液等组成,但现有的电极和电解液材料已经达到性能的极限,新一代锂离子电池的研制迫切需要材料技术上的突破。研究表明,锂离子电池纳米级的电极材料具有晶粒粒径小、比表面积大、离子扩散系数高等特点,有利于粒子内层活性材料中锂离子的嵌入脱出,提高活性材料的利用率,改善材料的充放电循环性能,电极及电解液接触面积的增加亦可提高充放电速率,这对改善锂离子电池的性能有着质的突破。碳酸锂作为一种重要的基础锂盐,在磁性材料、原子能工业及光电信息等高
被广泛使用,尤其作为新型锂离子电池正极材料及电解质的原料,常用来生产高纯氯化锂、溴化锂、氟化锂、高氯酸锂等高纯二次锂盐,进而制备电池正极材料和电解质,故纳米级碳酸锂对实现纳米材料在锂离子电池中的应用具有重要意义。目前合成纳米级碳酸锂的方法主要为水溶液法、气-液相接触法等。中国专利CN101209846A公开了一种电池用纳米级碳酸锂的制备方法,该法通过将锂离子与碳酸根离子在含有水溶性分散剂的水溶液中进行接触反应后,沉化、过滤、水洗、干燥,制得粒径在80纳米以下的碳酸锂。该法较好地利用了分散剂的分散性,使生成的碳酸锂粒径相对较小,但分散剂的稳定性易受温度、pH及体系中的杂质离子的影响,分散性能有限,使粒子粒径范围较难控制,不利于工业生产。中国专利CN102180488A公开了一种制备纳米碳酸锂的方法,该法通过将水溶性锂盐与水溶性分散剂溶于水配成混合溶液,再将该溶液通过喷淋分散到旋转填充床环形填充区的多孔填料上,同时通入二氧化碳或碳酸盐水溶液,通过离心力使其充分混合后,生成的纳米碳酸锂颗粒随混合液排出,经过滤、洗涤、干燥制得纳米级碳酸锂粉末。该法操作方便、生产效率高,相对以往工艺已有明显提升,但该法中仍较依赖分散剂的作用,使用过程中分散剂的稳定性对产品粒径有较大影响。
技术实现思路
本专利技术为克服现有技术中存在的问题和不足,提供了,其工艺易于控制、生产成本低、品质佳,满足纳米级产品要求。本专利技术所采用的技术方案是,包括以下步骤:制备包括锂源和碳酸源在内的反应前驱物,利用所述反应前驱物结合水溶性分散剂,在水热合成反应釜中特有的条件下制备碳酸锂浆液,对所述碳酸锂浆液进行过滤、洗涤、干燥,制得纳米级高纯碳酸锂。更具体的,所述制备方法的具体步骤如下:I)将纯水加热至67°C?78°C后,与单水氢氧化锂以质量比2: I混合,并加入少量水溶性分散剂,充分搅拌12min?18min,作为锂源;所述单水氢氧化锂为工业级氢氧化锂重结晶而得,水溶性分散剂为脂肪酸聚乙二醇酯、二丁基萘磺酸钠、十二烷基苯磺酸钠、亚甲基二萘磺酸钠、月桂酰二乙醇胺、阴离子聚丙烯酰胺、阴离子聚丙烯酸钠及苯乙烯-丙烯酸共聚物中的任意一种,所述水溶性分散剂占锂源总质量的0.1%?1.0% ;2)将碳酰胺(尿素)与纯水以质量比1:1混合,并充分搅拌,作为碳酸源,所述碳酰胺与单水氢氧化锂的摩尔比为1: 1.80?1.95 ;3)将所述锂源、碳酸源依次加入水热合成反应釜中,充分搅拌后封釜,将水热合成反应釜放入烘箱,以3°C /min的速率升温至105°C?118°C,保温5?1h后取出,用冷却水急冷后开釜,过滤反应釜内碳酸锂浆液得碳酸锂滤饼,并用煮沸的纯水趁热洗涤2?4次,制得碳酸锂湿料,所述水热合成反应釜为内衬聚四氟乙烯的不锈钢制品,装填度控制在60%?75% ;4)将步骤3)所制碳酸锂湿料在255 °C?348°C、压力-0.1Mpa?-0.08Mpa的低压环境下干燥8?15h,得到粒径在20?90nm的纳米级碳酸锂粉末。与现有技术相比,本专利技术的优势在于碳化用的二氧化碳由碳酰胺在碱性、加热环境的反应釜中逐渐水解而得,使碳化过程均匀充分;通过利用水热合成反应釜中的亚临界水热条件,使水作为具有强大解聚能力的气态矿化剂,加快水热物系的化学反应速率,结合有机水溶性分散剂的静电稳定和空间位阻机制促使溶液中的粒子难以靠拢、团聚,又使得溶液离子混合均匀,更趋向按化学计量反应,结晶过程中晶粒按其习性生长,又可将杂质排放至溶液中,从而使最终制得的碳酸锂产物纯度高,颗粒小,粒度均匀且分布范围小,具有积极的应用前景。【具体实施方式】下面通过具体实施例对本专利技术方法加以详细说明,以下实施例不应在任何程度上被理解为对本专利技术权利要求书请求保护范围的限制。以下各实施例中所用单水氢氧化锂为将工业级氢氧化锂用纯水重结晶而得。以下各实施例中所用水热合成反应釜为内衬聚四氟乙烯的不锈钢制品。实施例1,其步骤如下:I)将75.6g纯水加热至60°C后,与37.8g单水氢氧化锂混合,并加入1.1g十二烷基苯磺酸钠并充分搅拌20min,作为锂源;2)将30.0g碳酰胺(尿素)与30.0g纯水混合,作为碳酸源;3)将反应前驱物锂源、碳酸源依次加入250mL不锈钢水热合成反应釜中,充分搅拌后封釜,将水热合成反应釜放入烘箱,以3°C /min的速率升温至100°C,保温1h取出,用冷却水急冷后开釜,过滤反应釜内碳酸锂浆液得碳酸锂滤饼,并用煮沸的纯水趁热洗涤2次,制得碳酸锂湿料;4)将步骤3)所得碳酸锂湿料在250°C、压力-0.08Mpa环境下干燥15h,得到23.7g纳米级碳酸锂粉末,收率为71.1%。实施例2,其步骤如下:I)将8.9g阴离子聚丙烯酰胺(分子量300万?2200万)缓慢加入盛有89.0g纯水(pH?7)的塑料容器中,并以lOOr/min机械搅拌至固体完全溶解,再经60目网过滤制得分散剂溶液;2)将59.8g纯水加热至70°C后,与29.9g单水氢氧化锂混合,并加入5.4g步骤I)所得分散剂溶液,充分搅拌15min,作为锂源;3)将22.5g碳酰胺(尿素)与22.5g纯水混合,作为碳酸源;4)将反应前驱物锂源、碳酸源依次加入250mL不锈钢水热合成反应釜中,充分搅拌后封釜,将水热合成反应釜放入烘箱,以3°C /min的速率升温至110°C,保温7.5h后取出,用冷却水急冷后开釜,过滤反应釜内碳酸锂浆液得碳酸锂滤饼,并用煮沸的纯水趁热洗涤3次,制得碳酸锂湿料;5)将步骤4)所得碳酸锂湿料在300 °C、压力-0.09Mpa环境下干燥12h,得到18.5g纳米级碳酸锂粉末,收率为70.3%。实施例3,其步骤如下:I)将41.3g纯水加热至80°C后,与20.5g单水氢氧化锂混合,并滴加0.06g阴离子聚丙烯酸钠(分子量1000?5000),充分搅拌lOmin,作为锂源,;2)将15.0g碳酰胺(尿素)与15.0g纯水混合,作为碳酸源;3)将反应前驱物锂源、碳酸源依次加入250mL不锈钢水热合成反应釜中,充分搅拌后封釜,将水热合成反应釜放入烘箱,以3°C /min的速率升温至120°C,保温5h后取出,用冷却水急冷后开釜,过滤反应釜内碳酸锂浆液得碳酸锂滤饼,并用煮沸的纯水趁热洗涤4次,制得碳酸锂湿料;4)将步骤3)所得碳酸锂湿本文档来自技高网...
【技术保护点】
高纯碳酸锂的制备方法,其步骤如下:1)将纯水加热至67℃~78℃后,与单水氢氧化锂以质量比2∶1混合,并加入水溶性分散剂,搅拌12min~18min混合均匀,所得混合物为锂源;所述水溶性分散剂占锂源总质量的0.1%~1.0%;2)将碳酰胺与纯水以质量比1∶1混合均匀,作为碳酸源,所述碳酰胺与单水氢氧化锂的摩尔比为1∶1.80~1.95;3)将所述锂源、碳酸源依次加入水热合成反应釜中,充分搅拌后封釜,将水热合成反应釜放入烘箱,以3℃/min的速率升温至105℃~118℃,保温5~10h后取出,用冷却水急冷后开釜,过滤反应釜内碳酸锂浆液得碳酸锂滤饼,并用煮沸的纯水趁热洗涤2~4次,制得碳酸锂湿料,所述水热合成反应釜为内衬聚四氟乙烯的不锈钢制品;4)将步骤3)所制碳酸锂湿料在255℃~348℃、压力‑0.1Mpa~‑0.08Mpa下干燥8~15h,得到纳米级碳酸锂粉末。
【技术特征摘要】
【专利技术属性】
技术研发人员:陈燕,
申请(专利权)人:陈燕,
类型:发明
国别省市:江苏;32
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。