当前位置: 首页 > 专利查询>南通大学专利>正文

基于多权值神经网络的风机能耗监测识别方法技术

技术编号:12277490 阅读:80 留言:0更新日期:2015-11-05 03:31
本发明专利技术公开了一种基于多权值神经网络的风机能耗监测识别方法,获取训练样本时,通过人为制造各种类型的故障,使风机能耗增加,并采用国标规定的能效检测方法和系统,测试各种故障下风机能耗的增加值,对不同故障引起的能耗增加大小进行分类,将振动特征样本和轨迹特征样本组合,作为神经网络的训练样本,构建高维空间多权值神经元网络。在全天候能耗监测中,只需在风机上加装低成本三轴加速度传感器及涡流传感器,将三维振动信号及轴心轨迹特征向量输入多权值神经网络,网络输出即是能耗增加分类。

【技术实现步骤摘要】
基于多权值神经网络的风机能耗监测识别方法本申请是申请号:201410257423.1、申请日:2014.6.11、名称“风机能耗监测方法及系统”的分案申请。
本专利技术涉及一种风机能耗监测方法及系统。
技术介绍
风机、电机、水泵、压缩机被国际能源署(IEA)统称为“工业电机系统”。国家发改委“十一五”节能规划中指出,工业电机系统是中国的主要电力用户,占全部用电量的50%以上,其中风机的用电量占全国用电量的10.4%。因此,风机效率的提高,对节约电能意义十分重大。风机系统量大面广,节电潜力巨大。“通风机能效限定值及能效等级”国家标准的出台,规定了通风机的能效等级、能效限定值、节能评价值及试验方法,为我国高效风机能效工作的研究与开展提供了依据。也标志着我国高效风机能效标识工作的开始。2010年11月1日风机将正式列入中华人民共和国实行能源效率标识的产品目录(第六批),并已开始着手实施。风机在工业生产中长期运行时候,会产生很多故障,如动态不平衡引起的振动(包括转子系统制造过程剩余不平衡;风机叶片在旋转过程中,由于局部磨损或腐蚀,以及局部损坏或堵塞异物等原因;鼓风机在高温高压下工作,因热变形和热膨胀造成弯轴现象等);不对中引起的振动(资料表明,30%~50%的设备存在不对中问题。不对中既可产生径向振动,又会产生轴向振动;既会造成临近联轴节支承处的振动,也会造成远离联轴节的自由端的振动);机械松动(松动既可能导致机器的其它故障也可能因其它故障所引起,机械部件的磨损变形、轴系的不对中、不平衡等与松动相互影响);油膜振荡引起的振动;气体冲击引起的振动;气体压力波动引起的振动;谐波成份引起的振动;风机驱动用电机的各种故障,此外如轴、皮带链、齿轮、轴承等传动机构故障、电机灰尘凝结造成的散热不佳、运行时间过长或污垢及水的污染造成的润滑不佳等都会引起效率降低和能耗提高。这些故障,普遍会造成电机及风机系统发热、各种损耗增加,从而降低系统效率,增大系统能耗。因此,各种故障的存在与能效值降低(能耗值升高)存在因果关系,挖掘各种故障特征与能效降低值(能耗升高值)之间的数值关系,可作为能耗监测的依据。对于企业能效管理、及时淘汰和更换高能耗设备、有针对性的实现高能耗设备检修具有重要意义。通风机的总效率定义为风机传递给气体的动能和静压能之和与电机所传递的能量之比。现在使用于质检部门等其他机构的风机能耗检测系统,采用GB/T1236-2000《工业通风机用标准化风道进行性能试验》及GB-19761-2009《通风机能效限定值及能效等级》国标中有关通风机的试验方法构建测试系统,需对转速、压差、流量、功率、温度、转矩等多参数进行测量,构建的系统价格昂贵。且现有风机能耗检测设备针对不同类型的风机,要额外加装风筒等结构以方便流量和风压测量,且需安装差压传感器、扭矩传感器、转速传感器等多种传感器。由于风机长期运行后,各种故障会造成能耗增加,因此对风机能耗监测有利于企业能效管理、及时淘汰和更换高能耗设备、有针对性的实现高能耗设备检修。而以上能耗检测方法造成现有设备不适合于风机应用企业进行能耗监测,现有的昂贵设备更不适于为每台风机匹配实现全天候能效监测。随着节能减排基本国策的推进,风机的各种故障引起的效率降低及能耗提高需引起各风机应用企业的重视,此外外部电网参数变化引起的能效降低和能耗增加,也可以通过风机振动信号分析出来。在设备具有高性价比的前提下,为每台大功率风机配备能耗监测装置,实现对风机能效长期实时监测、准确发现由于各种机械故障、电气故障或供电电网参数变化引起的效率降低现象,对于企业能效管理、及时淘汰和更换高能耗设备、有针对性的实现高能耗设备检修具有重要意义。
技术实现思路
本专利技术的目的在于提供一种利于企业能效管理、及时淘汰和更换高能耗设备、有针对性的实现高能耗设备故障检修的风机能耗监测方法及系统。本专利技术的技术解决方案是:一种风机能耗监测方法,其特征是:包括下列步骤:(一)首先进行离线训练样本采集:(1)离线训练样本采集系统构建构建能耗测试系统,采用包括扭矩传感器、差压传感器、转速传感器的多种传感器,检测风机流量、通风机全压、通风机静压、容积流量、风机轴功率,最终得通风机效率,从而得知通风机能耗大小;采用三个三轴加速度传感器,分别置于轴承座外壳、电机外壳、通风机外壳上,获取三个测试点的X、Y、Z三轴正交振动信号;通过与转轴垂直平面内的两个相互垂直的涡流传感器同时采集振动信号,并分别将所采集的数据作为横、纵坐标拟合成的图形,即为轴心轨迹;(2)风机无故障时训练样本离线获取采用“信号处理及特征提取模块”进行特征提取,经过多次测量,获得多组无故障时的特征样本;将无故障时的特征样本对应的效率值定位为“能耗低”;(3)风机有故障时训练样本离线获取人为制造多种故障及多种故障的组合,采用三个三轴加速度传感器检测风机轴承座外壳、电机外壳、通风机外壳三点的三维振动信号,采用双涡流传感器检测轴心轨迹信号,采用“信号处理及特征提取模块”进行特征提取,对每一种故障进行多次测量,获得每一种故障下的特征样本;将不同故障情况下的效率值与无故障时的效率值进行比较,按照差值从大到小,均分为四种类型,分别定义为“能耗高”、“能耗偏高”、“能耗中等”、“能耗偏低”;(二)在线能耗监测采用三个三轴加速度传感器检测风机轴承座外壳、电机外壳、通风机外壳三点的三维振动信号,采用双涡流传感器检测轴心轨迹信号,采用“信号处理及特征提取模块”对信号进行特征提取,得到被测样本;采用多权值神经网络作为“基于神经网络的分类识别模块”的核心算法,采用“能耗检测用训练样本离线获取模块”获取的训练样本构造高维空间中的多自由度神经网络,在完成多权值神经元网络的构建之后,获得“能耗高”、“能耗偏高”、“能耗中等”、“能耗偏低”、“能耗低”五个表征不同能耗级别的多权值神经元覆盖区;计算待识别的样本与表征每类能耗级别的多权值神经元网络覆盖区之间的欧式距离,将与待识别样本的欧式距离最短的那一类能耗级别,当作待识别样本的所属的能耗级别,并将风机能耗级别分类作为多权值神经网络输出。风机无故障时训练样本离线获取的具体方法是:将无故障时三个三轴加速度传感器输出的时域信号,进行去噪,并采用四元数PCA进行主元分析,在保持三轴输出信号相关性的前提下,获取无故障时的振动特征向量;风机转子无故障正常运行时,采用双涡流传感器提取轴心轨迹,无故障时涡流传感器其振动信号的时域波形为正弦曲线,将两个相互垂直的正弦信号进行合成,便得到了圆或椭圆,提取轴心轨迹图像的几何尺寸特征、或灰度直方图特征、或纹理特征作为特征参数,并与加速度传感器获取的振动特征向量结合,得到无故障时样本;采用上述方法,进行多次测试,获取多组“能耗低”时的样本。一种风机能耗监测系统,其特征是:包括三个分别置于轴承座外壳、电机外壳、通风机外壳上的三轴加速度传感器及转轴垂直平面内的两个相互垂直的涡流传感器,三轴加速度传感器、涡流传感器与信号处理及特征提取模块连接,信号处理及特征提取模块和基于神经网络的分类识别模块连接。本专利技术提出基于振动信号及轴心轨迹信号分析的风机能耗监测方法。该方法在应用中不需要加装风筒等结构,采用三个三轴加速度传感器检测通风机多点三维振动信号(检测电机外本文档来自技高网
...
基于多权值神经网络的风机能耗监测识别方法

【技术保护点】
一种基于多权值神经网络的风机能耗监测识别方法,其特征是:包括下列步骤:(一)首先进行离线训练样本采集:(1) 离线训练样本采集系统构建构建能耗测试系统,采用包括扭矩传感器、差压传感器、转速传感器的多种传感器,检测风机流量、通风机全压、风机静压、容积流量、风机轴功率,最终得风机效率,从而得知风机能耗大小;采用三个三轴加速度传感器,分别置于轴承座外壳、电机外壳、风机外壳上,获取三个测试点的X、Y、Z三轴正交振动信号;通过与转轴垂直平面内的两个相互垂直的涡流传感器同时采集振动信号,并分别将所采集的数据作为横、纵坐标拟合成的图形,即为轴心轨迹;(2) 风机无故障时训练样本离线获取采用“信号处理及特征提取模块”进行特征提取,经过多次测量,获得多组无故障时的特征样本;将无故障时的特征样本对应的效率值定位为“能耗低”;(3)风机有故障时训练样本离线获取人为制造多种故障及多种故障的组合,采用三个三轴加速度传感器检测风机轴承座外壳、电机外壳、风机外壳三点的三维振动信号,采用双涡流传感器检测轴心轨迹信号,采用“信号处理及特征提取模块”进行特征提取,对每一种故障进行多次测量,获得每一种故障下的特征样本;将不同故障情况下的效率值与无故障时的效率值进行比较,按照差值从大到小,均分为四种类型,分别定义为“能耗高”、“能耗偏高”、“能耗中等”、“能耗偏低”;(二)在线能耗监测采用三个三轴加速度传感器检测风机轴承座外壳、电机外壳、风机外壳三点的三维振动信号,采用双涡流传感器检测轴心轨迹信号,采用“信号处理及特征提取模块”对信号进行特征提取,得到被测样本;采用多权值神经网络作为“基于神经网络的分类识别模块”的核心算法,采用“能耗检测用训练样本离线获取模块”获取的训练样本构造高维空间中的多自由度神经网络,在完成多权值神经元网络的构建之后,获得“能耗高”、“能耗偏高”、“能耗中等”、“能耗偏低”、“能耗低”五个表征不同能耗级别的多权值神经元覆盖区;计算待识别的样本与表征每类能耗级别的多权值神经元网络覆盖区之间的欧式距离,将与待识别样本的欧式距离最短的那一类能耗级别,当作待识别样本的所属的能耗级别,并将风机能耗级别分类作为多权值神经网络输出;风机无故障时训练样本离线获取的具体方法是:将无故障时三个三轴加速度传感器输出的时域信号,进行去噪,并采用四元数PCA进行主元分析,在保持三轴输出信号相关性的前提下,获取无故障时的振动特征向量;风机转子无故障正常运行时,采用双涡流传感器提取轴心轨迹,无故障时涡流传感器其振动信号的时域波形为正弦曲线,将两个相互垂直的正弦信号进行合成,便得到了圆或椭圆,提取轴心轨迹图像的几何尺寸特征、或灰度直方图特征、或纹理特征作为特征参数,并与加速度传感器获取的振动特征向量结合,得到无故障时样本;采用上述方法,进行多次测试,获取多组“能耗低”时的样本。...

【技术特征摘要】
1.一种基于多权值神经网络的风机能耗监测识别方法,构建能耗测试系统是采用包括扭矩传感器、差压传感器、转速传感器的多种传感器,检测风机流量、风机全压、风机静压、容积流量、风机轴功率,最终得风机效率,从而得知风机能耗大小,其特征是:包括下列步骤:(一)首先进行离线训练样本采集:(1)离线训练样本采集系统构建构建能耗测试系统;采用三个三轴加速度传感器,分别置于轴承座外壳、电机外壳、风机外壳上,获取三个测试点的X、Y、Z三轴正交振动信号;通过与转轴垂直平面内的两个相互垂直的涡流传感器同时采集振动信号,并分别将所采集的数据作为横、纵坐标拟合成的图形,即为轴心轨迹;(2)风机无故障时训练样本离线获取采用“信号处理及特征提取模块”进行特征提取,经过多次测量,获得多组无故障时的特征样本;将无故障时的特征样本对应的效率值定位为“能耗低”;(3)风机有故障时训练样本离线获取人为制造多种故障及多种故障的组合,采用三个三轴加速度传感器检测风机轴承座外壳、电机外壳、风机外壳三点的三维振动信号,采用双涡流传感器检测轴心轨迹信号,采用“信号处理及特征提取模块”进行特征提取,对每一种故障进行多次测量,获得每一种故障下的特征样本;将不同故障情况下的效率值与无故障时的效率值进行比较,按照差值从大到小,均分为四种类型,分别定义为“能耗高”、“能耗偏高”、“能耗中等”、“能耗偏低”;(二)在线能耗监测采用三个三轴加...

【专利技术属性】
技术研发人员:华亮顾菊平羌予践李俊红张齐吴晓张新松徐一鸣张华华俊豪蒋凌
申请(专利权)人:南通大学
类型:发明
国别省市:江苏;32

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1