机械手大臂支撑力可调平衡装置及其参数优化设计方法制造方法及图纸

技术编号:12169419 阅读:137 留言:0更新日期:2015-10-08 03:17
本发明专利技术公开了一种机械手大臂支撑力可调平衡装置及其参数优化设计方法,该装置是在机械手大臂和大臂基座之间设有气动支撑缸,气动支撑缸的两端分别铰接在机械手大臂和大臂基座上,在气动支撑缸与气源回路之间连接有气动压力控制回路;所述气动压力控制回路,主要由气源、稳压型减压阀、微雾分离器、电气比例压力阀、先导型减压阀、节流阀及压力表连接构成;通过气动压力控制回路,可实现对气动支撑缸供气压力的实时无级调控,使得气动支撑缸能够按照负载大小适当输出大臂所需要的平衡支撑力,使得大臂可用较小的驱动力矩实现对较大负载的顺利搬运。

【技术实现步骤摘要】
机械手大臂支撑力可调平衡装置及其参数优化设计方法
本专利技术涉及机械手领域,尤其涉及抓取式机械手大臂重力矩的平衡装置。
技术介绍
目前的抓取式机械手手臂主要由大臂、小臂、基座及手部等部件组成,各个关节均有电机驱动。机械手的重容比(机械手重量与负载重量之比)通常在10左右。抓取式机械手手臂工作中,其大臂常常有空载或负载不同工况。当机械手大臂进行俯仰运动时,必然存在要克服机械手手臂及负载的重力矩问题。当机械手的负载波动比较大时,必需用功率较大的驱动装置提供大臂驱动力矩,但是,这样会增加机械手的重容比。为了达到降低重容比的目的,有的采用了平衡装置,以满足机械手大臂在大负载情况下重力矩变化的需要。目前的气动平衡装置提供的支撑力往往是恒定的,仅能提供衡定的平衡力矩,满足不了负载波动的要求。所以,如何使气动平衡装置在机械手大臂的负载工况变化时,能更有针对性地提供不同工况时所需要的平衡力矩,以大大降低驱动装置的输出力矩的需要、扩展机械手的负载范围、大大降低机械手的重容比、提高机械手应用的经济性和适应性,这是本领域技术人员需要解决的问题。
技术实现思路
为解决上述问题,本专利技术提出了一种机械手大臂支撑力可调的气动平衡装置,并且提出了该装置一些参数的优化设计方法。一种机械手大臂支撑力可调平衡装置,其特征在于,所述的装置是在大臂和机械手基座左右两侧对称安装有两个气动支撑缸,每个气动支撑缸的两端分别铰接在大臂和机械手基座上,在两个气动支撑缸与气源回路之间连接有气动压力控制回路;所述气动压力控制回路,主要由气源、稳压型减压阀、微雾分离器、电气比例压力阀、先导型减压阀、单向节流阀及压力表连接构成;通过气动压力控制回路,可实现对气动支撑缸供气压力的实时无级调控,使得气动支撑缸能够按照负载大小适当输出大臂所需要的平衡支撑力;该装置参数的优化设计方法是:第一步,设计气动支撑缸两端分别在大臂和机械手基座上的安装位置参数和空载状态下气动支撑缸的初始气压值,以使得空载状态下大臂及小臂在俯仰运动过程中,气动支撑缸产生的平衡力矩与机械手总体重力矩之差的绝对值达到最小,也就是说使大臂驱动电机应该提供的基本驱动力矩达到最小;第1.1步、设定计算点和设计参数设机械手基座为点S,大臂俯仰关节为点O,位于点S正上方,大臂重心简化为点G1;小臂俯仰关节为点O1,小臂的重心简化为点G2;手部始终保持水平姿态,手部俯仰关节为点O2,手部及负载的重心都简化为点G3;设气动支撑缸与机械手基座的铰接点为点M,点M位于点O右下方,过点M做OS的垂直线交于点L,延长OO1与LM的延长线相交于点P;设气动支撑缸与大臂的铰接点为点N,点N位于大臂上,大臂俯仰运动时与地面夹角为α,小臂俯仰运动时与水平面夹角为β,大臂和小臂夹角为γ;第1.2步、确定设计变量取气动支撑缸与机械手基座的铰接点M与大臂俯仰关节点O的水平位移量LM为变量X1;气动支撑缸与机械手基座的铰接点M与大臂俯仰关节点O的竖直位移量OL为变量X2;气动支撑缸与大臂的铰接点N与大臂俯仰关节O的距离ON为变量X3;气动支撑缸内部的初始支撑力为X4;上述变量X1、X2、X3的长度单位为米,X4的支撑力单位为牛;此时的大臂长度为定长OO1,大臂俯仰关节O到大臂重心G1的长度为定长OG1;小臂长度为定长O1O2,小臂俯仰关节O1到小臂重心长度为定长O1G2;手部俯仰关节O2到手部重心长度为定长O2G3,长度单位为米;大臂重量为m1,小臂重量为m2,手部重量为m3,重量单位为公斤;第1.3步、根据具体设计要求确定变量X1、X2、X3、X4的取值范围,作为约束条件,并随机对变量X1、X2、X3、X4进行初始化赋值:其中,X1的取值范围为[0~0.07米],X2的取值范围为[0~0.2米],X3的取值范围为[0~0.53米],X4的取值范围为[10~2000牛];第1.4步、建立大臂和小臂活动范围内的手臂力学参数关系的数学模型手臂力学参数包括:大臂支撑力可调平衡装置的平衡力矩Mp,大臂俯仰重力矩Md,小臂俯仰重力矩Mx,手部重力矩Ms,力矩单位为牛米,有:Md=m1·g·Ld(1)Mx=m2·g·Lx(2)Ms=m3·g·Ls(3)Mp=X4·Lp(4)(1)、(2)、(3)、(4)式是随手臂俯仰位置而变化的,其中g=9.8米/秒2为重力加速度;Ld为大臂重力臂长度,Ld=OG1·cosα,单位为米;Lx为小臂重力臂长度,Lx=OO1·cosα+O1G2·cosβ,单位为米;Ls为手部重力臂长度,Ls=OO1·cosα+O1O2·cosβ+O2G3,单位为米;Lp为气动支撑缸平衡力臂长度,Lp=X3·sin∠ONM(5),单位为米;(5)式中(6)式中为气动支撑缸长,单位为米;(6)及(7)式中PM=X1+X2/tanα(8)PN=X3+X2/sinα(9)第1.5步、建立优化设计的目标函数fi(x)=max(abs(ΔMi))(10)f(x)=min(fi(x))(11)(10)式中,ΔMi=Mdi+Mxi+Msi-Mpi,i=1,2,3…n,表示大臂和小臂在俯仰过程各离散位置i时,气动支撑缸产生的平衡力矩与机械手总体重力矩之差;其中Mxi与Msi分别表示按照公式(2)和公式(3)计算得到的各离散位置i中的最大值,Mdi、Mpi分别表示按照公式(1)和公式(4)计算得到的各离散位置i的力矩值;(10)式表示,取fi(x)等于在各离散位置i上ΔMi绝对值最大的那个值;(11)式的f(x)是目标函数,优化设计的结果就是使得f(x)达到最小,即:使得大臂空载状态时所需的基本驱动力矩达到最小;第1.6步、根据上述设计变量、变量取值范围、大臂和小臂活动范围、手臂力学参数关系的数学模型及目标函数,编制出优化设计的计算机程序,并输入计算机进行运行,采用有约束的优化设计算法对各个设计变量X1、X2、X3、X4进行优化计算,直至达到期望的优化值;输出优化设计计算结果,从而确定出气动支撑缸安装位置参数X1、X2、X3及气动支撑缸内部的初始支撑力X4;第1.7步、按照每个气动支撑缸承担初始支撑力X4的一半,由气动支撑缸结构参数,计算得到每个气动支撑缸所需的初始充气压力值:式中p0为气动支撑缸内初始气体压力,单位为兆帕X4为气动支撑缸支撑力,单位为牛d为气动支撑缸活塞杆直径,单位为毫米通过上述设计,使空载状态下大臂俯仰运动过程中,气动支撑缸产生的平衡力矩与机械手总体重力矩之差的绝对值达到最小,也就是说使大臂驱动电机应该提供的基本驱动力矩达到了最小;第二步,在负载情况下,设计气动支撑缸在大臂俯仰运动过程中所需的动态气压,以使得在负载状态下,大臂及小臂在俯仰运动过程中,气动支撑缸产生的平衡力矩与机械手总体重力矩之差的绝对值达到最小,也就是说:使大臂驱动电机应该提供的基本驱动力矩达到最小;计算过程如下:第2.1步、将第一步所得的X1、X2、X3值分别赋给LM、OL与ON;设定抓取物体的负载重量为m4公斤,负载的重心位置也简化为点G3;仍设定大臂重量为m1,小臂重量为m2,手部重量为m3;手部始终保持水平姿态;设定支撑力为设计变量X5,取其变化范围为[10~2000]牛,作为约束条件;第2.2步、在大臂和小臂活动范围内,建立起气动支撑缸的平衡力矩Mp'本文档来自技高网...
机械手大臂支撑力可调平衡装置及其参数优化设计方法

【技术保护点】
一种机械手大臂支撑力可调平衡装置,其特征在于,其特征在于,该装置是在机械手大臂和大臂基座两侧,对称安装有两个气动支撑缸,每个气动支撑缸的两端分别铰接在机械手大臂和大臂基座上,在两个气动支撑缸与气源回路之间连接有气动压力控制回路;所述气动压力控制回路,主要由气源、稳压型减压阀、微雾分离器、电气比例压力阀、先导型减压阀、单向节流阀及压力表连接构成;通过气动压力控制回路,可实现对气动支撑缸供气压力的实时无级调控,使得气动支撑缸能够按照负载大小适当输出大臂所需要的平衡支撑力。

【技术特征摘要】
1.一种机械手大臂支撑力可调平衡装置参数的优化设计方法,其特征在于,所述的装置是在大臂和机械手基座左右两侧对称安装有两个气动支撑缸,每个气动支撑缸的两端分别铰接在大臂和机械手基座上,在两个气动支撑缸与气源回路之间连接有气动压力控制回路;所述气动压力控制回路,主要由气源、稳压型减压阀、微雾分离器、电气比例压力阀、先导型减压阀、单向节流阀及压力表连接构成;通过气动压力控制回路,可实现对气动支撑缸供气压力的实时无级调控,使得气动支撑缸能够按照负载大小适当输出大臂所需要的平衡支撑力;该装置参数的优化设计方法是:第一步,设计气动支撑缸两端分别在大臂和机械手基座上的安装位置参数和空载状态下气动支撑缸的初始气压值,以使得空载状态下大臂及小臂在俯仰运动过程中,气动支撑缸产生的平衡力矩与机械手总体重力矩之差的绝对值达到最小,也就是说使大臂驱动电机应该提供的基本驱动力矩达到最小;第1.1步、设定计算点和设计参数设机械手基座为点S,大臂俯仰关节为点O,位于点S正上方,大臂重心简化为点G1;小臂俯仰关节为点O1,小臂的重心简化为点G2;手部始终保持水平姿态,手部俯仰关节为点O2,手部及负载的重心都简化为点G3;设气动支撑缸与机械手基座的铰接点为点M,点M位于点O右下方,过点M做OS的垂直线交于点L,延长OO1与LM的延长线相交于点P;设气动支撑缸与大臂的铰接点为点N,点N位于大臂上,大臂俯仰运动时与地面夹角为α,小臂俯仰运动时与水平面夹角为β,大臂和小臂夹角为γ;第1.2步、确定设计变量取气动支撑缸与机械手基座的铰接点M与大臂俯仰关节点O的水平位移量LM为变量X1;气动支撑缸与机械手基座的铰接点M与大臂俯仰关节点O的竖直位移量OL为变量X2;气动支撑缸与大臂的铰接点N与大臂俯仰关节O的距离ON为变量X3;气动支撑缸内部的初始支撑力为X4;上述变量X1、X2、X3的长度单位为米,X4的支撑力单位为牛;此时的大臂长度为定长OO1,大臂俯仰关节O到大臂重心G1的长度为定长OG1;小臂长度为定长O1O2,小臂俯仰关节O1到小臂重心长度为定长O1G2;手部俯仰关节O2到手部重心长度为定长O2G3,长度单位为米;大臂重量为m1,小臂重量为m2,手部重量为m3,重量单位为公斤;第1.3步、根据具体设计要求确定变量X1、X2、X3、X4的取值范围,作为约束条件,并随机对变量X1、X2、X3、X4进行初始化赋值:其中,X1的取值范围为[0~0.07米],X2的取值范围为[0~0.2米],X3的取值范围为[0~0.53米],X4的取值范围为[10~2000牛];第1.4步、建立大臂和小臂活动范围内的手臂力学参数关系的数学模型手臂力学参数包括:大臂支撑力可调平衡装置的平衡力矩Mp,大臂俯仰重力矩Md,小臂俯仰重力矩Mx,手部重力矩Ms,力矩单位为牛米,有:Md=m1·g·Ld(1)Mx=m2·g·Lx(2)Ms=m3·g·Ls(3)Mp=X4·Lp(4)(1)、(2)、(3)、(4)式是随手臂俯仰位置而变化的,其中g=9.8米/秒2为重力加速度;Ld为大臂重力臂长度,Ld=OG1·cosα,单位为米;Lx为小臂重力臂长度,Lx=OO1·cosα+O1G2·cosβ,单位为米;Ls为手部重力臂长度,Ls=OO1·cosα+O1O2·cosβ+O2G3,单位为米;Lp为气动支撑缸平衡力臂长度,Lp=X3·sin∠ONM(5),单位为米;(5)式中(6)式中为气动支撑缸长,单位为米;(6)及(7)式中PM=X1+X2/tanα(8)PN=X3+X2/sinα(9)第1.5步、建立优化设计的目标函数fi(x)=max(abs(ΔMi))(10)f(x)=min(fi(x))(11)(10)式中,ΔMi=Mdi+Mxi+Msi-Mpi,i=1,2,3…n,表示大臂和小臂在俯仰过程各离散位置i时,气动支撑缸产生的平衡力矩与机械手总体重力矩之差;其中Mxi与Msi分别表示按照公式(2)和公式(3)计算得到的各离散位置i中的最大值,Mdi、Mpi分别表示按照公式(1)和公式(4)计算得到的各离散位置i的力矩值;(10)式表示,取fi(x)等于在各离散位置i上ΔMi绝对值最大的那个值;(11)式的f(x)是目标函数,优化设计的结果就是使得f(x)达到最小,即:使得大臂空载状态时所需的基本驱动力矩达到最小;第1.6步、根据...

【专利技术属性】
技术研发人员:樊炳辉冯磊王传江高波张坤江守雷宗亚伟
申请(专利权)人:山东科技大学
类型:发明
国别省市:山东;37

网友询问留言 已有0条评论
  • 还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。

1