本发明专利技术公开了一种基于工业机器人的飞机系统件安装方法及装置。该方法采用工业机器人通过工具快换装置自动抓取和更换系统件模板,并根据激光跟踪仪校准的作业路径和目标位姿进行系统件安装模板的自动定位,从而实现飞机装配中系统件取件、定位等辅助装配作业任务。飞机系统件安装装置包括:工业机器人、工具快换器、系统件库、系统件模板。可移动式工业机器人在零位时面向飞机机身,系统件库则位于机器人后侧。系统件库内设有多个隔间,隔间内按编码悬挂有系统件模板。系统件通过快速连接的接口与工具快换器相连接。工具快换器由机器人端和工具端两部分组成,由气动控制两部分的连接与分离完成系统件模板的自动抓取。
【技术实现步骤摘要】
本专利技术涉及一种基于工业机器人的飞机系统件安装方法及装置。
技术介绍
飞机装配过程复杂,劳动量大。目前,世界上航空业发达国家的飞机装配技术已从简单机械化、自动化装配转向数字化、柔性化装配,柔性装配是飞机装配技术的重要发展方向。工业机器人由于其高度的柔性、较小的安装空间需求和可编程控制等特点已逐渐扩大其在飞机柔性装配系统中的应用,比如对铝合金零部件进行对接处局部轻切削加工、装配过程中的取件与定位等辅助装配工作。工业机器人应用于飞机装配领域具有成本低、自动化程度高、柔性好、安装空间小等优点,能方便地实现工具头在空间的各种位姿(位置和姿态),可以满足自由曲面法向钻孔等复杂作业要求,而且利用工业机器人还可以完成多项不同的作业任务,比如取件、定位和钻铆加工等。基于工业机器人的飞机装配自动钻铆技术备受关注,美国专利US6,505,393B2公开了一种应用于飞机机身铆接的装置和方法,提出使用工业机器人进行飞机装配辅助铆接。文献"Robot assists in airplane drilling and fastening"(Rosier Dan, Robotics World, 1985,3(5): p.24-26), "Human-robot interaction in anaircraft wing drilling system" (Ching-torng Lin, Mao-jiun Wang, InternationalJournal of Industrial Ergonomics, 1999: p.83-94), "Automatic riveting cell forcommercial aircraft floor grid assembly" (Roche Nigel R., Aerospace Engineering(Warrendale, Pennsylvania), 1995,15(1): p.7-10)等都报导了基于工业机器人的飞机装配技术,但主要集中在自动钻孔、铆接等作业环节。然而,现有技术的工业机器人作业系统往往任务单一或较少。飞机大部件调姿对合装配工艺过程复杂,劳动量大,如何增加工业机器人作业系统的功能使其取代工人完成更多的任务是改进产品质量、提高生产效率、降低成本和劳动强度的一个关键问题。
技术实现思路
本专利技术的目的是针对上述飞机装配中的问题,提供--种基于工业机器人的飞机系统件安装方法及装置。基于工业机器人的飞机系统件安装方法采用工业机器人通过工具快换器自动抓取和更换系统件模板,并根据激光跟踪仪校准的作业路径和目标位姿进行系统件安装模板的自动定位。基于工业机器人的飞机系统件安装装置包括工业机器人、工具快换器、系统件库、系统件模板。所述的工业机器人为六轴关节型串联机器人。系统件库内设有多个隔间,隔间内按编码悬挂有系统件模板。系统件模板通过快速连接的接口与工具快换器相连接。工具快换器由机器人端和工具端两部分组成,由气动控制两部分的连接与分离完成系统件模板的自动抓取。基于工业机器人的飞机系统件安装方法包括如下步骤1) 将工具快换器的机器人端依次装于工业机器人的末端法兰;将工具快换器的工具端和系统件模板相连接,并置于系统件库内事先设定的摆放位置。2) 工业机器人按照系统件模板抓取示教程序,从Home位姿(根据安全作业位置及作业范围设定)出发,运动到统件模板抓取位姿,由气动控制工具快换器的机器人端和工具端进行连接,自动抓取统件模板,并回到Home位姿。3) 工业机器人按照离线编程生成的初始作业运动轨迹,从Home位姿出发,运动到系统件安装作业位姿,进行预定位,由激光跟踪仪对机器人末端的位姿进行检测,并根据检测结果对机器人的位姿进行校正,以生成最终的机器人系统件安装作业运动轨迹。4) 工业机器人回到Home位姿,运行经过位姿校正的作业程序,将系统件模板定位到机身的相应位置,进行系统件的辅助安装。5) 系统件安装完成之后,工业机器人回到Home位姿,控制机器人移动平台移动到下一个站位,进行下一个系统件安装的作业任务。采用工业机器人实现飞机装配中系统件取件、定位等辅助装配作业任务,提高了生产效率、降低了成本和劳动强度。附图说明图1为基于工业机器人的飞机系统件安装装置的构成图;图2为本专利技术实施例的一个组成部分系统件库;图3为为本专利技术实施例的一个组成部分工具快换器的结构图;图4为依据本专利技术实施方式的基于工业机器人的飞机系统件安装的一个实施例;图中工业机器人l、工具快换器2、系统件库3、系统件模板4、工具快换器机器人端5、工具快换器工具端6、机身7、机器人移动平台8。具体实施例方式下面结合附图对本专利技术的具体实施进行详细说明。如图1所示,基于工业机器人的飞机系统件安装装置包括工业机器人1、工具快换器2、系统件库3、系统件模板4。基于工业机器人的飞机系统件安装方法采用工业机器人1通过工具快换器2自动抓取和更换系统件模板4,并根据激光跟踪仪校准的作业路径和目标位姿进行系统件安装模板4的自动定位。工业机器人1为ABB IRB6640型六轴机器人。进行实际的飞机系统件辅助安装作业任务前,机器人控制点TCP的初始运动轨迹,根据理论位置由离线编程系统生成,经激光跟踪仪进行位姿校正后得到最终的作业运动轨迹。位姿校正时,机器人1进行预定位,机器人控制系统与激光跟踪仪建立闭环,由跟踪仪检测机器人1是否到达作业位姿。当机器人1按离线编程示教程序运动到指定位置时,激光跟踪仪对其位姿进行监测,如果位姿偏差大于指定容差,机器人1按照跟踪仪反馈数据进行补偿并生成最终的机器人系统件辅助作业任务TCP运动轨迹,以保证机器人系统件辅助安装时达到正确的作业位姿。进行实际的飞机系统件辅助安装作业任务时,根据校正的作业程序,工业机器人l从原始点(Home)位姿(根据安全作业位置及作业范围设定)出发,运动到系统件模板4抓取位姿,由工具快换器2实现自动抓取系统件模板4,并回到Home位姿,然后机器人l从Home位姿出发,运动到规定的作业位姿完成飞机系统件辅助安装作业任务。图2示出的为本专利技术实施例的一个组成部分系统件库。系统件库3内设有多个隔间,隔间内按编码悬挂有系统件模板4。系统件模板4分别通过快速连接的接口与工具快换器2相连接。6图3示出的为本专利技术实施例的一个组成部分工具快换器的结构图。工具快换器2由机器人端5和工具端6两部分组成,由气动控制两部分的连接与分离完成系统件模板4的自动抓取和更换。工具快换器工具端6始终与系统件模板4相连,每个系统件模板4均通过法兰与一个工具快换器工具端6连接,并按编码悬挂于系统件库3中。当作业任务改变时,由机器人1通过工具快换器2自动更换系统件模板4。工具快换器2带有一套可靠自锁装置和自动对接装置,能承受一定的重量,并且能够自动接通电信号和压縮空气等。图4示出的为依据本专利技术实施方式的基于工业机器人的飞机系统件安装的一个实施例,可移动式工业机器人1在零位时面向飞机机身7,系统件库3则位于机器人1后侧。安装方法包括如下步骤1) 将工具快换器2的机器人端5依次装于工业机器人1的末端法兰;将工具快换器2的工具端6和系统件模板4相连接,并置于系统件库3内事先设定的摆放位置。2) 工业机器人1按照系统件模板4抓取本文档来自技高网...
【技术保护点】
一种基于工业机器人的飞机系统件安装方法,其特征在于采用工业机器人(1)通过工具快换器(2)自动抓取和更换系统件模板(4),并根据激光跟踪仪校准的作业路径和目标位姿进行系统件安装模板(4)的自动定位。
【技术特征摘要】
【专利技术属性】
技术研发人员:刘勇,黄跃,张洪双,
申请(专利权)人:成都飞机工业集团有限责任公司,
类型:发明
国别省市:90[中国|成都]
还没有人留言评论。发表了对其他浏览者有用的留言会获得科技券。